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SECURE NETWORKING USING A
RESOURCE-CONSTRAINED DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This invention claims priority pursuant to 35 U.S.C. 119 of
U.S. Provisional Patent Application Ser. No. 60/506,992,
filed on Sep. 29, 2003. This Provisional Application is hereby
incorporated by reference in its entirety.

TECHNICAL FIELD

This invention relates in general to the field of communi-
cation between nodes on a computer network, and specifi-
cally to communicating in a secure manner between a remote
node and a resource-constrained device.

BACKGROUND OF THE INVENTION

In the new information age, computing is becoming per-
vasive. Classes of machines that hitherto were entirely
“dumb” machines are acquiring some level of “intelligence”.
As that trend continues, there are also higher levels of expec-
tation placed on the machines. For example, where previous
generations of machines were not expected to have any com-
puting capability, subsequent generations have some degree
of computerization. A further step in this evolution is con-
necting machines to networks. However, often either because
of physical size constraints or because computing power and
data storage are not the main function of a machine, the
computational power and memory size may be very limited.
These constraints have a great impact on the ability of such
resource-constrained devices to interact with other nodes ona
network.

An example of such a resource-constrained device is the
smart card. A smart card is simply a plastic card containing an
integrated circuit with some memory and a microprocessor.
Typically the memory is restricted to 6K bytes of RAM. It is
anticipated that smart card RAM may increase by a few
kilobytes over the next few years. However, it is very likely
that memory size will continue to be an obstacle to smart card
applications. Most smart cards have 8-bit microprocessors.

Communications infrastructure presents another resource
constraint on smart cards and similar devices. Smart cards do
not have full speed USB communications, and lack full
duplex serial interfaces. Currently smart cards use the ISO-
7816 interface which operates at half duplex.

There are other devices with similar resource limitations.
These include USB dongles (such as the iKey device sold by
SafeNet, Inc., Belcamp, Md.), or SD Cards, or secure inte-
grated circuit chips soldered directly to PC motherboards.

Herein, devices that have in common similar resource limi-
tations, e.g., RAM limited to less than 64K, shall be referred
to as “resource-constrained devices”. Resource-constrained
devices include smart cards, USB dongles, SD cards and
secure integrated circuit chips attached directly to PC moth-
erboards. Furthermore, the term resource-constrained device
shall include any other devices that have similar resource
constraints to these enumerated devices. For the sake of Tucid-
ity, the invention is described herein primarily in the context
of smart cards. This must not be construed to limit the scope
or applicability of the invention as it is equally applicable to
other resource-constrained devices.

Smart cards have been used in many different applications
in which data security is important. These include secure
transactions, electronic purses, loyalty programs, encryption,
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computer access, building access, storage of personal medi-
cal data, and subscriber identity modules (SIM) for GSM
mobile telephones. Hitherto, smart cards have been con-
nected to host computers in order to perform their assigned
tasks and smart cards have been primarily used in conjunction
with off-line transactions.

Smart cards have been used with a terminal or a host, which
may be acomputer having a smart card reader, or a cell phone,
or other devices. When smart cards are connected to comput-
ers, host applications cannot communicate with them using
standard mainstream network interfaces. Specific hardware
and software in the form of smart card reader device drivers
and middle-ware applications are needed to access the card
services.

The ISO 7816 specification is the standard for smart cards.
Among other things, the standard specifies how the smart
cards and the terminal communicate with each other. The
communication is master/slave or command/response mode,
where the terminal is the master and the card is the slave.
When the card receives a command from the terminal, the
card performs the requested operation and sends to the termi-
nal a response relative to the command. The terminal may
then send another command. The card cannot initiate the
conversion. Recent works, for example U.S. Pat. No. 6,157,
966 (Montgomery, M., Guthery, S., and du Castel, B. “System
and Method for an ISO 7816 Compliant Smart Card to
Become Master Over a Terminal”) and the Proactive SIM
used in GSM Phase 1I products, enable the card to initiate
communication by having the terminal polling the card. Poll-
ing enables the card to request services from the terminal. The
terminal examines the request (command from the card), and
performs the service or accesses the Internet resource as
required. In both cases (the terminal sends command or the
smart card sends command), the smart card works with a
terminal and is not a standalone device. A problem of this
terminal dependent working model is the security. The termi-
nal examines and interprets the messages coming from the
network and from the smart card. The security boundary is on
the terminal and not in the smart card. If the terminal is
compromised, so is the card.

In the new information age, connecting to the Internet and
conducting transactions of various sorts over the Internet is of
paramount importance. It is therefore desirable to enable the
use of smart cards and other resource-constrained devices to
be connected to the Internet. There are several prior art
examples of connecting smart cards and other resource-con-
strained devices to the Internet. These prior art examples fall
into two categories: those that rely on a proxy on a computer
connected to the Internet and those that implement a mini-
mized communications protocol stack. FIG. 1 is a schematic
illustration of one prior art mechanism for connecting a smart
card 101 to a remote computer 103 via anetwork 105, e.g., the
Internet. The smart card 101 is inserted into a smart card
reader 107 either through physical electrical connectors or
through some wireless connection mechanism. The reader
107 is connected (usually through a serial cable) to a host PC
109.

In the aforementioned scheme of using a smart card over
the Internet, to establish secure communication with the
remote computer requires the involvement of the host PC 109.
Host applications take care of communicating with the smart
card using the ISO 7816 standard, sending commands and
then reading responses in APDU format. There is no commu-
nication security built into this format. As such the network
security boundary resides on the host computer, and not on
the smart card. A remote computer can connect to the host in
a secure way, but the network link between host computer and



US 7,509,487 B2

3

smart card is generally not secure. GlobalPlatform (www.glo-
balplatform.org—a consortium established to develop and
promote smart card standards) has defined a way of encrypt-
ing APDUs between smart card and the host computer, but
this approach also requires trusting the host computer. TCP/
1P packets are decrypted on the host and then encrypted again
for transmission to the smart card via APDU.

Some examples of Internet smart cards include Webcard,
iSimplity!, and WebSim. The Webcard, developed by the
Center for Information Technology Integration (CITI) of the
University of Michigan in 1999 (Rees, J., and Honeyman, P.,
“Webcard: a Java Card Web Server,” University of Michigan,
CITI Technical Report 99-3, http://www.citi.umich.edu/
projects/smartcard/webcard/citi-tr-99-3.html), executes as a
Java Card applet. The Webcard deals with the resource con-
straints of a smart card by implementing a very simplified
TCP/IP, which is just enough to support a simple HTTP
server. The Webcard uses the standard ISO 7816 for commu-
nication with the host by transmitting IP packets using ISO
7816 APDUs. The host is configured to run a tunnel deamon,
which is configured to receive all packets carrying a pre-
specified IP address. The daemon forwards the IP packets
with the proper address to the card.

A second class of resource-constrained devices that may be
connected to the Internet consists of embedded TCP/IP
implementations.

Secure Sockets Layer (SSL) and its successor Transport
Layer Security (TLS) are the de facto standards for securing
communication between web servers and web browsers. SSL
and TLS protocols have been implemented on a vast variety of
platforms that range from enterprise class servers to small
hand-held devices. However, SSL and TLS have never been
deployed on a device as small as a smart card.

SSL-C Micro Edition toolkit is a C based implementation
of SSL/TLS protocols targeted at small devices with limited
resources. [t comes as part of RSA Security’s BSAFE product
line (RSA Security, SSL-C Micro Edition, http://www/rsase-
curity.com/products/?g=5&id=6). SSL-C ME is targeted for
platforms such as Windows CE, Palm, etc. However, its
memory footprint and architecture cannot be extended for use
in smart cards. For example, it automatically expands the size
ofread/write buffers to accommodate the size of TLS records,
using as much as 32K RAM for the buffers alone. (RSA
BSAFE, SSL-C Micro Edition Developer’s Guide, version
1.1.0, by RSA Security. A PDF version of this document is
available at:  http://developer.rsasecurity.com/products/
?7g=5&i1d=6). Such memory usage would not work for
resource-constrained devices such as smart cards.

Wedgetail Communications of Brisbane, Australia has a
Java based product called JCSI Micro Edition SSL for CLDC/
MIDP. Itimplements SSI. 3.0 and TLS 1.0 protocols and adds
HTTPS support to CLDC via standard CLDC connection
interface. CLDC is the foundation for Java runtime environ-
ment targeted at small resource constrained devices such as
mobile phones, pagers, and PDAs, but currently it is not
targeted at devices as small as smart card. The CLDC 1.1
specification assumes at least 32K of volatile memory for VM
runtime alone, with RAM still need for SSL context and 1/0
buffers. Therefore, this Wedgetail Communication product
cannot be adapted for use in smart cards. Information about
their JCSI Micro Edition SSL toolkit can be found at their
website:  http://www.wedgetail.com/jcsi/microedition/ssl/
midp/index.html.

SSL Plus Embedded is an SSL toolkit for developing
secure network solutions based on SSL. 2.0, SSL. 3.0 and TLS
1.0 protocols. It was developed by Certicom Corporation of
Mississauga, Ontario, Canada. The target platforms include
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Palm, Windows CE, and VxWorks. The static library for SSL.
Plus Embedded requires about 70K. Although acceptable for
other embedded devices the RAM requirement is too big for
smart cards. Information about this toolkit can be found at
Certicom’s website at: http:/www.certicom.com/products/
ssl_plus/ssl_plus_embedded.html

DeviceSSL. is an SSL protocol implementation with
optional support for TLS protocol. Developed by SPYRUS
Inc. of San Jose, Calif., DeviceSSL serves as a toolkit for
building secure network solutions for small connected
devices. It is targeted for devices like PDA and RTOS appli-
cations on the network, but not for smart cards. The code
footprint for DeviceSSL is about 100K on server side. The
RAM requirement is unsuitable for a smart card. Information
about this product is available at: http://www.spyrus.com/
content/products/Terisa/DeviceSSL.asp.

From the foregoing, it is apparent that there is still a need
for having resource-constrained devices, such as smart cards,
that are able to communicate with other nodes on a network
using standard protocols and network software applications.
There is a further unmet need for having the security bound-
ary located on the resource-constrained device so as to
remove the host computer as a source of smart card vulner-
ability to attack.

Accordingly, there is a need for a resource-constrained
device which implements a communications protocol stack
that provides the resource-constrained device with the capa-
bility to act as a network node capable of secure communi-
cation using standard protocols.

SUMMARY OF THE INVENTION

Ina preferred embodiment, the invention provides an infra-
structureless resource-constrained device, for example, a
smart card, capable of acting as a full-fledged network node
providing secure communication to other nodes on the net-
work and in which the security boundary is located on the
infrastructureless resource-constrained device. Such infra-
structureless resource-constrained devices can easily be
adapted so that the resource-constrained device can provide
many of the functions traditionally associated with full-
fledged network nodes.

In a preferred embodiment of the invention, secure com-
munication is provided for between a resource-constrained
device and remote network nodes over a network. The remote
network nodes communicate with the resource-constrained
device using un-modified network clients and servers. The
resource-constrained device has a central processing unit, a
random access memory, non-volatile memory, a read-only
memory, and an input and output component.

The communication between the resource-constrained
device and the remote network nodes is established over one
of several different types of physical links, e.g., USB, serial
with full-duplex, serial with half-duplex, or contactless radio
connection.

Executing on the resource-constrained device, a commu-
nications module implements one or more link layer commu-
nication protocols, operable to communicate with a host com-
puter, operable to communicate with remote network nodes
and operable to implement network security protocols
thereby setting a security boundary inside the resource-con-
strained device. In one embodiment of the invention, the
resource-constrained device implements an execution model,
wherein the resource-constrained device uses at least one
optimization technique selected from swapping data from the
random access memory to the non-volatile memory, swap-
ping data from the non-volatile memory to the random access
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memory; sharing data buffers between one or more commu-
nications protocol layers or security protocol layers, execut-
ing on the host computer one or more link layer communica-
tion protocols operable to communicate with the resource-
constrained device and operable to communicate with the
remote network nodes, and executing one or more secure
network applications on the resource-constrained device
wherein the network applications call upon the communica-
tion module of the resource-constrained device to communi-
cate with the remote network node wherein the secure net-
work applications are securely accessible by the remote
network nodes using un-modified network clients and serv-
ers.

Other aspects and advantages of the present invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings, illus-
trating by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of one prior art mecha-
nism for connecting a smart card to a remote computer via a
network, e.g., the Internet.

FIG. 2 is a schematic illustration of a deployment scenario
for resource-constrained devices according to the invention.

FIG. 3(a) is a schematic illustration of a communications
software modules on a conventional smart card and host
computer connected to each other via a card reader.

FIG. 3(b) is a schematic illustration of an infrastructureless
network smart card connected via an unmodified host com-
puter to a network and, through the network, to a remote client
computer.

FIG. 4(a) is an illustration of a first alternative for connect-
ing an infrastructureless network smart card according to the
invention to a network.

FIG. 4(b) is an illustration of a second alternative for con-
necting an infrastructureless network smart card to a network.

FIG. 5 is a schematic illustration of the communications
protocol stack for the infrastructureless network smart card
according to one embodiment of the invention.

FIG. 6(a) is a schematic illustration of the components for
implementing communication between a smart card and a
network wherein the smart card communicates to a host com-
puter using a serial connection having full-duplex serial 1/0.

FIG. 6(b) is a schematic illustration of the components for
implementing communication between a smart card and a
network wherein the smart card communicates to a smart card
reader using a serial connection having half-duplex serial I/O.

FIG. 6(c) is a schematic illustration of the components for
implementing communication between a smart card and a
network wherein the smart card communicates to a host com-
puter using a serial connection having half-duplex serial 1/0.

FIG. 7(a) is a schematic illustration of the components of
connecting a network smart card to a network via a host
computer over a USB using a serial-to-USB reader.

FIG. 7(b) is a schematic illustration of the components of
connecting a network smart card to a network via a host
computer over a USB using a USB reader.

FIG. 7(c) is a schematic illustration of the components of
an alternative embodiment for connecting a network smart
card to anetwork via ahost computer overa USB usinga USB
reader.

FIG. 7(d) is a schematic illustration of the components for
connecting a network smart card to a network using SPI
according to the arrangement in which the card/reader inter-
face is SPI and the reader/host interface in USB.
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FIG. 7(e) In this embodiment, the Peer I/O protocol (de-
scribed in greater detail below) is implemented in a Peer /O
client 615(7d) using the MMC bus protocol to carry Internet
protocol data, for example, PPP frames.

FIG. 8 is a high-level schematic diagram of the communi-
cations protocol stack, a host computer and a network smart
card implementing the Peer /O protocol in which APDU
carries PPP frames.

FIG.9 is a schematic illustration of the finite state machine
that controls the behavior of the Peer I/O server.

FIG. 10 is a schematic illustration of the finite state
machine that controls the behavior of the Peer 1/O client.

FIG. 11 is a schematic illustration of the software architec-
ture and execution model for a network smart card according
to the invention operating using a single task operating sys-
tem.

FIG. 12 is a schematic illustration of an alternative soft-
ware architecture and execution model for a network smart
card according to the invention operating using a multi task
operating system.

FIG.13(a) is a schematic illustration of a pbuf chain having
two pbufs.

FIG. 13(b) is a schematic illustration of a pbuf chain as
used in the processing of output application data.

FIG. 14 is an illustration of the sequence used for in-buffer
AHDLC processing.

FIG. 15 is a schematic illustration of an infrastructureless
network smart card according to the invention used to com-
municate in a secure fashion end-to-end with a remote com-
puter wherein the security boundary is located on the smart
card.

FIG. 16 is a schematic illustration of the SSL/TLS security
layer relative to the application layer and transmission layers.

FIG. 17 is a schematic illustration of the sequence of steps
that take place during a typical TLS handshake phase.

FIG. 18 is a schematic illustration of the sequence of steps
that take place during a partial TLS handshake phase.

FIG. 19 is an illustration of the TLS Record Protocol.

FIGS. 20(a) and (b) are schematic illustrations of the soft-
ware architecture for an infrastructureless network smart card
with a module for implementing the TLS protocol.

FIG. 21 is an illustration of swapping a data block from the
RAM pool to NVM.

FIG. 22 is an illustration of the process of reading a TLS
record that is larger than the buffer available on a resource-
constrained device for TLS records.

FIG. 23 is an illustration of a first approach to reading large
TLS records while using a small TLS buffer, which is called
the performance-critical approach.

FIG. 24 is an illustration of a second approach to reading
large TLS records while using a small TLS buffer, which is
called the error-critical approach.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

1. Introduction

In the following detailed description, reference is made to
the accompanying drawings that show, by way of illustration,
specific embodiments in which the invention may be prac-
ticed. These embodiments are described in sufficient detail to
enable those skilled in the art to practice the invention. It is to
be understood that the various embodiments of the invention,
although different, are not necessarily mutually exclusive.
For example, a particular feature, structure, or characteristic
described herein in connection with one embodiment may be
implemented within other embodiments without departing
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from the spirit and scope of the invention. In addition, it is to
be understood that the location or arrangement of individual
elements within each disclosed embodiment may be modified
without departing from the spirit and scope of the invention.
The following detailed description is, therefore, not to be
taken in a limiting sense, and the scope of the present inven-
tion is defined only by the appended claims, appropriately
interpreted, along with the full range of equivalents to which
the claims are entitled. In the drawings, like numerals refer to
the same or similar functionality throughout the several
views. In the accompanying drawings, numerals that are
given a parenthetical modifier indicates one species of a class
of like elements, e.g., smart card 201(x), indicates that the
referred to element is version x of the greater class smart cards
201. Furthermore, primes (') and double-primes (") are used
to indicate distinct individuals of the same element; e.g.,
smart card 201(c) and 201(c)' are identical in all aspects
relevant to the particular illustration, but are different smart
cards. As shown in the drawings for purposes of illustration,
the invention is embodied in novel resource-constrained
devices, such as a smart cards, USB dongles (such as the iKey
device sold by SafeNet, Inc.), or SD Cards, or secure inte-
grated circuit chips soldered directly to PC motherboards,
that may act as a network node and which is capable of
communicating in a secure manner with other nodes using
standard communications protocols and services. A resource-
constrained device, according to the invention, provides an
implementation of an Internet communications protocol
stack such that it can act as a standalone Internet node and
communicate with other nodes on the Internet in a secure
manner. A resource-constrained device according to the
invention is fully capable of having the security boundary
located on the resource-constrained device rather than on the
host.

2. Deployment Scenario

FIG. 2 is a schematic illustration of a deployment scenario
for resource-constrained devices according to the invention.
In the illustration of FIG. 2, for exemplary purposes, the
resource-constrained devices are network smart cards 201
(a)-201(f) according to the invention. Network smart card
201(a) is a GSM subscriber identity module (usually referred
to as a SIM card) connected to a network 203 via a GSM
telephone handset 205 and a wireless gateway 207. Network
smart card 201(5) is a network smart card connected to the
network 203 via a wireless handheld computer 209, e.g., a
personal digital assistant or a notebook computer. Network
smart cards 201(c), 201(c)', and 201(c)" are connected to the
network 203 via a smart card hub 213. Finally, network smart
card 201(d) is connected to the network 203 via a smart card
reader 215 connected to a host computer 217. The smart card
reader 215 may be a USB connector such as the e-gate con-
nector marketed by Axalto (formerly SchlumbergerSema).
The network 203 may be a LAN, a WAN, or the Internet, or
any combination of the three. A typical scenario would be to
have a network card 201 connected to a device (e.g., a host or
a reader) that is connected to a LAN which, in turn, is con-
nected to the Internet via a WAN.

Any given deployment of network smart cards can include
a combination of types of network cards 201 and other
resource-constrained devices.

As described in greater detail hereinbelow, once the net-
work connection has been established, various other nodes
connected to the network 203, e.g., client computers 219,
219',and 219", may access the services provided by any given
network card 201 in a secure manner from any physical
location on the network 203. For example, an authentication
service of a network smart card 201 plugged into a computer
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217 or a mobile phone 205 in Austin, Tex. may be accessed
via a client computer 219 in Paris, France to permit access to
a secure database.

3. Communications Software Modules for Smart Card

FIG. 3(a) is a schematic illustration of the communications
software modules on a conventional smart card 101 and host
computer 109 connected to each other via a card reader 107.
In this conventional approach, communication between the
smart card 101 and the network (not show in FIG. 3(a)) is
accomplished by having all the actual interaction with the
network occur between the host computer 109 and the net-
work. For that purpose, the host computer has special middle-
ware 307 that provides the interface functionality between
network software 309 and pc-to-smart card (PC/SC) software
311. Physical layer communication between the card 101 and
host 109 relies on ISO 7816 on either a serial or a USB
connection.

As can be appreciated from FIG. 3(a), the host computer
109 is loaded with several pieces of special purpose software.
It would be desirable to accomplish communication between
a smart card and the network without requiring any special
infrastructure.

FIG. 3(b) is a schematic illustration of an infrastructureless
network smart card 201 connected via an unmodified host
computer 217 to a network 203 and, through the network 203,
to a remote client computer 219. The remote client computer
219 interacts with the smart card 201 using standard network
applications, e.g., Netscape Navigator, Microsoft Internet
Explorer, telnet applications, or any other application
designed to communicate with other Internet nodes using
standard Internet protocols such as TCP/IP, PPP, SSL, etc.

4. Smart Card as an Internet Node

FIG. 4(a) is an illustration of a first alternative for connect-
ing an infrastructureless network smart card according to the
invention to a network. The infrastructureless network smart
card 201(4a) is connected to a reader 215(4a) which is con-
nected to a host computer 217(4a). The computer 217(4a) is
connected to a network 203. The computer 217(4a) acts as a
router for routing Internet communications to and from the
card 201(4a). The computer 217(4a) has a first IP address for
its connection to the network 203 and a second IP address for
connections to the infrastructureless network smart card 201
(4a). There is a third IP address associated with the infrastruc-
tureless network smart card 201(4a). The third IP address
may be either assigned to the card 201(4a) or allocated
dynamically.

FIG. 4(b) is an illustration of a second alternative for con-
necting an infrastructureless network smart card 201(45) to a
network 203. Inthe second alternative the card reader 215(45)
is connected directly to the network 203.

In each of these two alternatives the card 201 has its own IP
address, which may be statically assigned to the card or be
obtained dynamically. The card 201 implements a network
protocol suite, e.g., the TCP/IP protocol suite, thereby per-
mitting the card 201 to communicate with other Internet
nodes using Internet standard protocols and applications
without requiring a proxy. The infrastructureless network
smart card 201 communications protocol stack is described in
greater detail below.

5. Communications Protocol Stack for Infrastructureless
Network Smart Card

FIG. 5 is a schematic illustration of a communications
protocol stack 500 for the infrastructureless network smart
card 201 according to one embodiment of the invention. The
Internet smart card 201 has a TCP/IP protocol stack 501 on
the card in order to be a standalone Internet node. Depending
on the I/O characteristics of the card 201 and its physical
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connection with the external device, the smart card may have
various link layer protocols. One way to connect the card 201
to the Internet 203 is by connecting a smart card reader 215,
via a serial cable, to a host computer 215 that has an Internet
connection. Supposing that the host computer 215 is running
the Microsoft Windows operating system, Windows defines
the direct serial cable connection as a modem type. Remote
Access Server (RAS), which is part of the Windows installa-
tion on the host computer 215, provides services that enable a
dial-indevice, in this case the smart card 201, to connect to the
Internet 203. RAS uses Point-to-Point protocol (PPP) to com-
municate with the dial-in device, the client. The client ini-
tiates the PPP negotiation. RAS can acquire an IP address via
DHCEP for the client. After the PPP connection is established
with the client, RAS acts as a router between the Internet and
the client. Other operating systems, such as Linux, also define
remote access via PPP. The method presented here is not
limited to the Windows operating system.

Smart cards usually communicate using half-duplex. This
constraint presents a challenge to having smart cards com-
municate as full-fledged Internet nodes.

With standard full-duplex serial 1/O, a device can connect
to the serial port (COM port) of a PC (e.g., a host computer
215) and establish a connection with RAS to gain Internet
access without loading any additional software on the PC.
Since RAS communicates using PPP, a smart card according
to one embodiment of the invention, implements PPP to con-
nect to a PC via a serial connection in addition to implement-
ing TCP/IP.

Thus, if the smart card 201 has full-duplex serial 1/0, then
just like other full-duplex serial device, the smart card 201
with TCP/IP/PPP can establish an Internet connection via
RAS without loading any additional software on the host
computer 215. However, the smart card ISO standards specify
half-duplex I/O. The smart card contact I/O interface follows
ISO 7816 protocol and the contact-less 1/O interface follows
ISO 14443 protocol. Smart cards with USB 1/O interface are
recent products. Currently, the USB smart cards also use ISO
7816 protocol (ISO 7816-12 is currently being formulated for
USB smart cards), but this protocol merely encapsulates the
ISO 7816 APDUs, and still suffers from the limitations of the
ISO 7816 protocol.

In addition to the full duplex vs. half-duplex problem,
Internet protocols are peer-to-peet, i.e., any node can initiate
communication when it so desires, while ISO 7816 and ISO
14443 protocols specify command/response operation in
which the smart card responds to a command issued by the
host. To solve these two problems, one embodiment of the
invention is a new protocol, referred to herein as the “Peer
1/0” protocol 503. Peer 1/0 503 provides a mechanism for
half-duplex command/response protocols to support full-du-
plex peer-to-peer Internet protocols. The Peer I/O protocol
503 is described in greater detail herein below.

In the future there may be smart cards that have full USB
capabilities, including logical full duplex mode. For full
duplex serial and full (not ISO 7816-12) USB cards, the
standard protocols support Internet protocols directly and
Peer 1/O is not required. However, for present and future
protocols which, like ISO 7816, do not directly support peer-
to-peer interactions, Peer I/O may be used so that the inven-
tion described herein can be adapted to those situations.

Which protocols are implemented in the protocol stack 500
on the Internet smart card 201 depends on the physical link
between the smart card 201 and the host computer 217 and
any intervening devices. The TCP/IP protocol suite is
required for Internet communication. The protocols below
the TCP/IP layer may change according to the physical link
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between a device and the Internet. For embodiments of the
invention with a half-duplex serial link or contact-less link,
Peer 1/0 503 is used and smart cards 201, smart card readers
215 and host computers 217 implement Peer I/O in the form
of Peer 1/O server and client software modules. These mod-
ules are described in greater detail below.

In alternative embodiments, USB is the physical link
between smart cards and terminals. The following section
explores various mechanisms for connecting Internet smart
cards using a USB link, where the card may or may not have
USB. These mechanisms affect the protocol stack below the
TCP/IP layer on the smart card.

6. Physical Laver and Link Layer Connections

There are several ways of providing physical and link layer
connections for Internet smart cards according to the inven-
tion. Physical connections include serial connections (e.g.,
RS-232), USB connections and contact-less connections. The
sections that follow describe these physical connections and
link layer connections implemented on those physical con-
nections. FIGS. 6(a) through 6(c) are illustrations of serial
link implementations of the invention and FIGS. 7(a) through
7(c) are illustrations showing USB implementations of the
invention. The communication protocol for the contact-less
connection is similar to the communication protocol
described above for the half-duplex serial connection (FIGS.
6(b) and 6(c)). In the FIGS. 6(a) through 6(c) and 7(a)
through 7(c), the readers might be internal or external to the
host computer.

6.1. Serial Connection

FIGS. 6(a) through 6(c) are schematic illustrations of com-
ponents for implementing communication between smart
cards 201 and a network 203 using a serial connection 607.

FIG. 6(a) is a schematic illustration of the components for
implementing communication between a smart card 201(6a)
and a network 203 wherein the smart card 201(6a) commu-
nicates to a host computer 217(6a) using a serial connection
607 having full-duplex serial 1/O. For smart cards 201 that
have full duplex serial /O, the link layer on the card 201 is an
implementation of PPP on the card. No additional software,
beyond that which is normally found on a PC, is needed on the
host PC 217(6a). With an established PPP connection
between the card 201(6a) and the PC 217(6a), the card
becomes a standalone Internet node.

FIG. 6(b) is a schematic illustration of an alternative
method for connecting a smart card and a network, in which
a smart card 201(65) communicates with the network 203
through an ISO standard half-duplex interface via a smartcard
reader 215(65) and a host computer 217(65). The smart card
reader 215(65) provides an implementation of the Peer I/O
Server 613(6b), described in greater detail herein below. The
smart card reader 215(65) connects to the smart card 201(65)
through an ISO standard half-duplex I/O interface and to a
host computer 217(65) via a standard full-duplex I/O inter-
face 607. Because the smart card reader 215(65) completely
handles the ISO 7816 protocol, and connects to the host
computer 217(65) using standard serial protocol, no addi-
tional software, beyond that which is normally found on a PC,
is needed on the host PC 217(65).

FIG. 6(c) is a schematic illustration of the components for
implementing communication between a smart card 601(6¢)
and a network 203 wherein the smart card 601(6¢) commu-
nicates to a host computer 217(6¢) using a serial connection
607(6¢) having half-duplex serial I/O. The current smart card
standard specifies half-duplex 1/O interface, ISO 7816 for
contact card and ISO 14443 for contact-less card. According
to the invention, a special protocol (Peer 1/O) described herein
below, enables the half-duplex command/response protocol
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to support the full-duplex peer-to-peer communication
according to Internet communications protocol. A driver 611
(6¢) on the PC 217(6¢) is used to implement a Peer I/O server
613(6¢); this is the only additional software added to the PC
217(6¢). The driver 611 behaves as a normal COM port from
the Windows perspective so that RAS connection is set to the
Peer /O COM port. Furthermore, a Peer /O client 615 on the
smart card 201(6¢) is used to implement the card-side of the
Peer I/O protocol.

6.2. USB Connection

The Universal Serial Bus, USB, is gaining popularity for its
many good features including high data rate (12 Mbps for
USB v1.1 and 480 Mbps for USB v2.0), plug and play,
expandability (up to 127 devices), external to PC, power
management, and power supplied by cable. The legacy con-
nection ports, such as serial and parallel ports, and legacy
expansion buses like ISA and PCI are being eliminated in
future mainstream PCs and are being replaced by USB. At the
same time, smart card chip vendors are starting to put USB
interfaces on smart card chips. There are several methods for
enabling Internet smart cards using USB, for example, as
described herein below.

6.3. Serial/USB Reader

FIG. 7(a) is a schematic illustration of the components of
connecting a network smart card 201(7a) to a network 203 via
a host computer 217(7a) over a USB using a serial-to-USB
reader 709. The smart card 201(7q) is ISO 7816 compliant
with serial I/O. The card protocol stack includes TCP/IP, PPP
and a Peer I/O client module 615. The reader has a Peer I/O
server 613 and logic 715 to perform a USB-to-serial conver-
sion. The reader 709 connects to the host computer 217(7a)
via a USB port 711. A COM (serial) port driver 713 on the
host computer 217(7a) performs a serial-to-USB conversion.
With the COM (serial) port driver 713, the USB port 711
appears as a COM port to the host computer 217(7a) and RAS
can use this USB COM port for connection. A COM
(serial) port driver 713 is available from FTDI
(http://www.ftdichip.con/us232.htm).

6.4. USB Reader

FIG. 7(b) is a schematic illustration of the components of
connecting a network smart card 201(7a) to a network 203 via
a host computer 217(7b) over a USB using a USB reader
709(7b). In contrast to the serial/USB reader embodiment of
FIG. 7(a), the Peer I/O server 613(76) is located in the driver
717 on the host computer 217(75). The driver 717 also does
serial-to-USB conversion 719, thereby appearing as a COM
port. The RAS (PPP server) can use this COM port for direct
connection.

6.5. USB with Remote NDIS

FIG. 7(c) is a schematic illustration of the components of
an alternative embodiment for connecting a network smart
card 201 to a network 203 via a host computer 217. A smart
card 201(7¢) is connected to a host computer 217(7¢) over a
USB link 701 using a USB reader 709(75). In this embodi-
ment no additional driver is required on the host 217(7¢) side.
The smart card 201(7¢) has a full speed USB driver 727 and
a Remote NDIS driver 721. The card 201(7¢) is a network
device and there is no need for either RAS or PPP.

The smart card side protocol stack includes DHCP, TCP,
UDRP, IP, collectively, IP layer 723, an Ethernet driver 725 and
the Remote NDIS device driver 721. The Ethernet driver 725
manages Ethernet frames received from and transmitted to
the remote NDIS device driver 721. For the incoming packets,
the Ethernet driver 725 either handles them or takes out the
payload and passes the payload to the IP layer 723. The
out-going IP datagrams from the IP layer 723 are framed with
Ethernet headers and trailers by the Ethernet driver 725 and
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are sent out via Remote NDIS layer 721. The smart card
behaves as a virtual Ethernet device. If the smart card is only
used for local network connection, the DHCP is not required.

The USB smart card 201(7¢) may be in the form of a USB
token that can be plugged into a PC USB slot directly, i.e.,
bypassing a separate or distinct USB reader 709(75). Once
plugged in, the smart card 201(7¢) is initialized at the USB
level. Using the Remote NDIS message protocol, the host
217(7¢) configures the smart card 201(7¢) as a new network
adaptor. The host 217(7¢) and the smart card 201(7¢) can then
send Ethernet packets to each other.

6.6. Ethernet over USB Protocol

A new USB standard is emerging which encapsulates Eth-
ernet protocol directly on USB. The result is exactly like FIG.
7(c), except that RNDIS is replaced by Ethernet over USB.
This protocol directly bridges between USB and Ethernet and
is less complex than RNDIS. The advantages are the same as
the RDNIS solution: no additional driver is required on the
host 217(7¢), the card 201(7¢) is a network device, and there
is no need for either RAS or PPP. Just as with Remote NDIS
message protocol, with Ethernet over USB the host 217(7¢)
configures the smart card 201(7¢) as a new network adaptor.
The host 217(7¢) and the smart card 201(7¢) can then send
Ethernet packets to each other, using any available protocol
including DHCP, TCP, UDP, IP, SSL,, and TLS, to name a few.

6.7. SPI Connection

In an alternative embodiment the communication between
the smart card 201 and the host computer 217 uses a Serial
Peripheral Interface. The Serial Peripheral Interface (SPI),
named by Motorola and also known as Microwire, trademark
of National Semiconductor, is a full-duplex synchronous
serial interface for communications between a microproces-
sor and its peripheral devices. Two microprocessors can also
communicate using SPI. SPI devices communicate using a
master/slave relationship over four wires, two control lines
and two data lines. The maximum communication speed is 20
Mbits/second. Currently, SPI is mainly used in analog/digital
converters, memories (EEPROM and flash), Real Time
Clocks (RTC) and others. Some smart card chips include SPI,
and some smart card readers have SPI connections to the host
computers as well. However, SPI is defined at the bus level
and the intermediate level connection protocol is yet to be
standardized.

It is possible to achieve networking functionalities for
smart cards with SPI connections. Because there are two
interfaces involved, card/reader interface and reader/terminal
interface, and because the connection can be serial, contact-
less, USB, or SPI, the combination of the interfaces result in
various categories of possibilities of connecting a smart card
to a host computer using SPI. The following list these catego-
ries and propose network smart card solutions using SPI.
These solutions are examples and other solutions are pos-
sible.

In a first alternative embodiment using SPI, the card and
reader interface is SPI; and the reader and terminal interface
is another connection, such as serial or USB. This alternative
presents two possibilities:

a. The reader/terminal interface is full duplex serial. ARAS
connection can be used. A driver is required on the PC
side. The SPIdriver on the card side must be able to carry
PPP frames.

b. The reader/terminal interface is USB. The methods pro-
posed in conjunction with the discussion of FIGS. 7(a)
through 7(c) apply here as well. The SPI driver on the
card side must be able to carry PPP frames or Ethernet
frames, depending on the solution used on the terminal
side.
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In a second alternative,the reader and terminal interface is
SPI; and the card and reader interface is another connection,
such as ISO 7816 for contact card, ISO 14443 for contactless
card, or USB. This alternative presents two possibilities:

a. The card/reader interface is ISO 7816 or ISO 14443 . Peer
10 is required. The card has Peer 10 client. The reader or
the terminal has the Peer 10 server. The host side also
needs a driver for RAS connection.

b. The card/reader interface is USB. The host side needs a
driver for network connection. The card side needs a
driver to carry link layer frames.

In a third alternative embodiment the card and terminal
connect directly via SPI. Each of the card and terminal con-
tain corresponding driver modules implementing a link layer
protocol defined for PPP, IP, or Ethernet connection.

FIG. 7(d) is a schematic illustration of the components for
connecting a network smart card to a network using SPI
according to the arrangement in which the card/reader inter-
face is SPI and the reader/host interface is USB. The card
201(7d) includes an SPI driver 731. The smart card 201(74) is
connected to the network via an SPI/USB reader 709(7d)
which is capable of communicating using SPI with the smart
card and to be connected to a host 217(7d) using the USB
protocol. The SPI/USB reader 709(74) communicates with a
USB driver 711 located on the host 217(7d) for communicat-
ing Ethernet frames between the host 217(74) and the smart
card 201(7d).

6.8. MMC

In another alternative embodiment the invention described
herein is employed to connect MultiMediaCards (MMC) to a
network. In this embodiment, MMC cards have much the
same role as the network smart cards 201 described herein.

MultiMediaCards (MMC) are small (24 mmx32 mmor 18
mmx1.4 mm), removable, solid-state memory cards for
mobile applications, such as cell phones, digital cameras,
MP-3 music players, and PDAs. The storage capacity of a
MMC is up to 1 Gbyte of data. High speed MMC can transfer
data up to 52 Mbits/second. MMCs use flash technology for
read/write applications and ROM or flash technology for read
only applications.

An MMC has a seven-pin serial interface, which has three
communication lines (command, clock and data) and four
supply lines. The MMC initialization and data transfer are
based on the MMC bus protocol. Each message uses one of
the three tokens: Command, Response and Data. A command
token starts an operation, which is sent from the host to one or
more cards. The response token is sent from the addressed
card or cards to the host. The data token can go either way. All
bits on the data and command lines are transferred synchro-
nously with the clock.

The Secure MultiMediaCard (Secure MMC) adds smart
card security features into the MMC for content protection
and e-commerce. It has a tamper resistant module for secure
storage and does encryptions and authentication within the
card. For example, Infineon Technologies uses its smart card
hardware technology in its Secure MMC. The Secure MMC
is fully compatible with standard MMC.

Recently, the MultiMediaCard Association (www.mmca-
.org) has formed a working group to standardize the next
generation of Secure MultiMediaCard (Secure MMC) (ww-
w.mmca.org/press/SecurityFinal.pdf). The new specification
V.2.0 defines an extension to the MMC standard protocol to
create a communication interface for incorporating smart
card technology. This enables the MMC to provide smart card
security features, such as encryption and authentication. The
extended MMC command set enables the MMC interface to
carry standard smart card ISO-7816 APDUs.
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The invention described herein for enabling smart cards to
be Internet nodes also applies to future Secure MMCs and is
illustrated in FIG. 7(e). In this embodiment, the Peer /O
protocol (described in greater detail below) is implemented in
aPeer /O client 615(74) using the MMC bus protocol to carry
Internet protocol data, for example, PPP frames. The SPI is
another communication interface to MMC, in addition to
MMC bus. Some MMC cards allow selecting MMC or SPI
mode. Therefore, the methods presented above in the section
describing use of SPI in a network smart card apply to Secure
MMC as well. The Secure MMC may also use other multi-
media transport protocols to communicate with the host or the
network. FIG. 7(e) illustrates one example configuration for
making Secure MMC as an Internet node. Other examples
include replacing PPP and Peer I/O by other link layer pro-
tocols and replacing TCP by other transport protocols, such as
UDP.

7. Peer 1/O Protocol

The Peer I/O client 615 and Peer I/O server 613' are imple-
mentations of the client and server side of a link layer proto-
col, the Peer 1/O protocol. The current smart card standard
ISO 7816 (ISO 14443 for contact-less card) specifies a half-
duplex command/response communication protocol while
standard Internet protocols, such as PPP, IP, and TCP, operate
in a full-duplex and peer-to-peer mode. A smart card compli-
ant with ISO 7816 (or ISO 14443) standard that implements
the Peer 1/O protocol in a Peer I/O client 615 may act as an
Internet smart card.

7.1. Features of the Peer 1/0 Protocol

The purpose of the Peer 1/O protocol is to bridge the ISO
7816 (or ISO 14443) protocol and Internet protocols. The
Peer I/O is implemented on both the host PC (or reader) side
and the card side. The Peer I/O protocol and the associated
Peer 1/O client and server modules perform the following
functions:

Enable the card that operates in a command/response mode
to communicate with network nodes (desktop, laptop,
etc.) as a peer;

Enable the card with half-duplex communication hardware
to handle full-duplex communication traffic;

Encapsulate upper layer protocol frames;

Enableto transport upper layer protocol frames longer than
256 bytes without fragmentation and de-fragmentation
mechanisms;

Support multiple logical connections of upper layer proto-
cols;

Provide independence from the upper layer protocols and
from applications.

7.2. Peer I/O Module Architecture

FIG. 8 is a high-level schematic diagram of the communi-
cations protocol stacks a host computer 705 and a network
smart card 701 implementing the Peer /O protocol.

In embodiments of the invention that include the link-layer
protocol introduced herein as Peer 1/O, a Peer /O module
resides in both the host PC 217 (or reader 709) and in the card
201. The protocol stack 811 on the host PC side 217 (which
may be any of the previously shown host PCs 217 that imple-
ment Peer [/O), a Peer /O server module 613 implements the
Peer 1/O protocol layer 801 and provides services to forward
messages between the card 201 and the Remote Access
Server (RAS) 803 on the host computer 217. On the smart
card 201 side, the protocol stack 813 contains a Peer /O
protocol layer 809 that sits above APDU 807 and below other
protocols, such as PPP 805. APDU provides the communica-
tions between the host 217(8) and the card 201(8). The Peer
1/0O protocol 801 is independent of the Internet protocol it
carries. From an upper layer protocol point of view, Peer [/O
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801 can carry messages to and from both directions. For
example, Peer I/O 801 can be used to carry PPP frames or
Ethernet frames or IP datagrams. Peer I/O uses APDU to
carry messages, such as PPP frames, Ethernet frames or IP
datagrams. The following description of Peer I/O uses RAS
and PPP as an example. In this case, the Peer I/O uses APDU
to carry PPP frames.

When RAS sends a message to the card 201, the Peer [/O
server 613 forwards the message by sending one or more
APDU commands containing the message to the card 201. To
enable the card 201 to send a message to RAS, the Peer [/O
server 613 polls the card 201 regularly. Finite State Machine,
described in greater detail below, of the Peer I/O server 613
and the Peer I/O client 615 define a mechanism to forward
messages of any length without using an explicit fragmenta-
tion and assembly mechanism.

The Peer 1/O server 613 on the host side can be imple-
mented as a COM port driver. In this way, no additional host
software, except the Peer [/O COM port driver, is required on
the host side. The discussion in conjunction with FIGS. 6(5),
6(c), 7(a) and 7(b) describes several ways of deploying Peer
1/0.

7.3. Peer 1/0O Protocol Format

The following defines one implementation of Peer I/O.
Peer 1/0 implementation is not limited to the following
defined class, instruction, and status words set. The Peer 1/O
Protocol defines a new ISO 7816 class CLA=0x12 for Peer
1/0 protocol (ISO 7816-4 reserves 0x10-0x7F CLA numbers
for future use. ISimplify uses 0x10). Three instructions are
defined for this Peer I/O class, namely, POLL, GET_
PACKET, and PUT_PACKET. The Peer 1/O server uses
POLL to poll the card to see if the card wants to send any-
thing; uses GET_PACKET to get data from card; and uses
PUT_PACKET to send data to the card. The Peer /O protocol
does not have its own protocol data unit. It uses APDU
directly.

A Peer /0 command APDU has the following format:

0x12 INS Null Null Length (Data)

The instruction INS can be one of the following:
POLL (0xES8): Length=1; Data is one arbitrary byte.

PUT_PACKET (0xEA) : Length is the number of bytes of
Data sending to the card

GET_PACKET (0xEC) : Length is the number of bytes of
Data receiving from the card

The Length is one byte, so the maximum data length is 256
bytes. Note that POLL command sends one arbitrary byte.
This is to avoid ISO 7816 Case I command, which no ACK be
sent by the card and some readers do not work well with.

A response APDU has the following format:

ACK (Data) SW1SW2

The ACK represents the acknowledgement from the card
for receiving the command from the Peer I/O server. The ACK
is the INC code of the received command. The status of the
process on the card side is represented by SW1 and SW2 in
the response APDU. For all the three Peer 1/O instructions,
response status can be the following:
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READY-WRITExx (e.g., 6Cxx): xx represents the number

of bytes that the card is ready to send.

NO-DATA (e.g., 9000): the card is ready to receive.

Warning or error status.

The reason to use 6Cxx for normal status is the following.
The IOP API on the host side does not export status of the
APDU command. So 6Cxx is used for the Peer I/O server to
catch it as an exception.

7.4. Peer I/O Operation

When RAS sends data to the card, Peer I/O server issues a
PUT_PACKET command to the card. The APDU contains
the data.

0x12 PUT_PACKET Null Null Length Data

When the card wants to send a data to RAS, it has to wait for
its opportunity. The Peer I/O server regularly polls to give the
card opportunities to send. The server issues a POLL com-
mand.

0x12 POLL Null Null 1 1

After receiving a command APDU from Peer I/O server,
the card responds with an ACK first. If the card has no data to
send, it sets SW1 SW2 as NO-DATA (e.g., 90 00).

ACK 9000

If the card has data to send, it sets SW1 SW2 as 6Cxx,
where xx is the length of data that the card intends to send.

ACK 6C xx

When Peer 1/O server receives the response with status
READY-WRITE (6Cxx), it issues a GET_PACKET com-
mand with Length=xx before issuing any other command.

0x12 GET_PACKET Null Null XX

The card responds with a response APDU containing data.

ACK Data SW1 SwW2

When the SW1 SW2=6Cxx, the Peer I/O server can issue
another GET_PACKET command.

7.5. Peer I/O Finite State Machines

Operation of the Peer /O server 613 and the Peer I/O client
615 are controlled by two finite state machines, respectively.

FIG. 9 is a schematic illustration of the finite state machine
901 that controls the behavior of the Peer I/O server 613.

The finite state machine (FSM) 901 has five states:

Initial state 902;

Polling 903;

Getting from card 905;
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Putting to card 909; and

Checking RAS 907.

There are four events:

Two status from card (READY-WRITE (6Cxx) or NO-
DATA (9000)) (READY-WRITE (6Cxx) indicates that
the card has data to send and xx is the length of data that
the card intends to send; NO-DATA (9000) is an indica-
tion from the card that it has no data to send)

Two results from checking RAS (no data or has data).

There are four actions:

Get packet from card

Put packet to card

Get from RAS

Put to RAS

The Peer /O server 613 always starts in the Polling state
903 by polling the card. If the card returns status READY-
WRITExx (6Cxx), that indicates the card having data to send
and the Peer /O server 613 transitions to the Getting-from-
card state 905, gets data from the card by issuing GET_
PACKET instructions with a value xx for the Length field, and
forwards the data to RAS. The Peer I/O server 613 stays in the
Getting-from-card state 905 and continues getting data from
the card and forward data to RAS as long as the card returns
status READY-WRITExx (6Cxx).

Whenever the card returns status NO-DATA (9000), that
indicates the card has no data to send or is ready to receive,
and the Peer /O server 613, whether in the polling state 903
or in the Getting-from-card state 905, transitions to the
Checking-RAS state 907, and checks with RAS to determine
if RAS has data to send to the card. When RAS has data, the
Peer 1/O server 613, transitions to the Putting-to-card state
909, obtains that data from RAS and forwards the data to the
card. If RAS has no data, the Peer I/O server 613, transitions
back to the polling state 903, and again polls the card. While
putting data to the card, the Peer /O server 613 may obtain a
message from the card that it wishes to transmit data. In this
case the Peer I/O server 613 transitions to the Getting-from-
card state 905. If however, the Peer I/O server 613 receives a
NO-DATA message, the Peer I/O server 613 transitions back
to the Checking-RAS state 907.

FIG. 10 is a schematic illustration of the finite state
machine 1001 that controls the behavior of the Peer /O Client
615.

There are four states:

Initial state 1003

Waiting upper layer instruction (read or write) 1011
(The upper layer is the standard protocol stack, i.e.,

TCP/IP.)

Ready write, waiting for the Peer /O server 1009

Ready read, waiting for the Peer 1/O server 1013

There are five events:

Read instruction from the upper layer

Write instruction from the upper layer

Poll command from the Peer I/O server

Put command from the Peer I/O server

Get command from the Peer I/O server.

There are four actions:

Send status READY-WRITExx (6Cxx) to the Peer 1/0
server

Send status NO-DATA (9000) to the Peer 1/O server

Get data from the Peer I/O server

Send data to the Peer I/O server.

The card 201 contains a Peer I/O client 615. The Peer 1/O
client 615 starts at the initial state 1003. The upper layer may
either request to write 1005 or to read 1007 and causes the
Peer /O client 615 to transition to Wait-Server-Ready-Write
state 1009 or Wait-Server-Ready-Read state 1013, respec-
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tively. In one implementation, the application on the smart
card sends the first message via the upper layer to initiate PPP
connection. (Note: the Peer /O protocol does not dictate who
initiates connection.) The Peer /O client 615 leaves its “ini-
tial” state 1003 and transitions to Wait-Server-Ready-Write
state 1009 when the upper layer issues a write instruction
1005. The Peer I/O client 702 waits in the Wait-Server-
Ready-Write state 1009 for the message from Peer I/O server
613. As mentioned above, the Peer 1/O server 613 starts by
polling the Peer I/O client 615. When the Peer I/O server 613
polls the smart card, the Peer I/O client 615 sends a status
message READY-WRITExx (6Cxx) indicating that the Peer
1/O client 615 is ready to transmit data where xx is the number
of'bytes to be sent, and stays in the Wait-Server-Ready-Write
state 1009. When the Peer I/O server 613 issues a Get Packet
command, the Peer I/O client 615 sends the data and moves to
Wait-Upper state 1011 where it waits for upper layer instruc-
tions. If the upper layer issues “write” instruction, the Peer
1/O client 615 sends status READY-WRITExx (6Cxx) to Peer
1/O server 613 and moves to Wait-Server-Ready-Write state
1009. If the upper layer issues “read”, the Peer I/O client 615
sends status the NO-DATA (9000) acknowledgement to Peer
1/O server 613 and moves to Wait-Server-Ready-Read state
1013. When in the Wait-Server-Ready-Read state 1013, the
Peer I/O client 615 waits for a command from the Peer I/O
server 613. When the Peer I/O server 613 polls, the client
sends another NO-DATA (9000) message and stays in Wait-
Server-Ready-Read state 1013. If the Peer I/O server 613
issues a-Put Packet command, the Peer I/O client 615 gets the
data and moves to the Wait-Upper state 1011.

The finite state machines 9001 and 1001 described above in
conjunction with FIGS. 9 and 10 enables Peer I/O servers and
clients to handle messages of any size. Because APDU limits
data size to 256 bytes, one message may be sent via multiple
APDUs. The protocol stack above Peer I/O on the card side
manages the higher-level protocol and therefore understands
the protocol and packets and, hence, can identify the begin-
ning and the end of a frame. The Peer I/O layer does not need
to know the upper layer protocol and does not know anything
about the data it is forwarding back and forth between the card
and the host.

8. Network Smart Card Architecture and Execution Model

8.1. Introduction

Smart cards have very limited resources in terms of CPU
speed and memory size. Yet, it is desirable to be able to
develop PC/workstation-like Internet applications in smart
cards. The combination of these two factors presents a unique
challenge to the design of the software architecture and
execution model for the Internet smart card.

In a typical embedded system, because of the resource
constraints, software usually runs in a single thread. The
execution model is either I/O event driven or implements
polling from an application running on the embedded system.
The application functions are typically invoked via callback
functions, which are registered by the application during ini-
tialization and are called back from the communication mod-
ule. This mechanism works well for simple applications, but
it cannot satisfy the requirement to be able to write PC/work-
station style Internet applications.

On the other hand, modem PCs and workstations have
multi-tasking operating systems. The communication sys-
tem, including interrupt handler or hardware interface, device
driver, and modules in the Internet protocol layer, uses more
than one thread. The device driver and protocol layer typi-
cally have their own buffering schemes. Internet applications
call functions of the communication system to establish con-
nections and to send or receive data, for example, using BSD



US 7,509,487 B2

19

socket API. From the application’s perspective, the execution
model is application driven. This mechanism works well
when there is enough memory resource and CPU power.
However, having many threads running concurrently does not
work for resource limited embedded systems because of high
resource requirements and the time required for context
switching between threads, especially if the RAM contents
must be cached in NVM.

Both the software architecture and execution model of the
network smart card 201 according to the invention fall
between the typical embedded system style and typical PC
style. This novel in-between mechanism enables the Internet
smart card 201 to provide PC/workstation style Internet appli-
cations with the limited resources available on the smart card.
Two designs are presented below, one for a single task oper-
ating system and one for a multi-tasking operating system.
The two designs have similar software architecture but have
different execution models.

FIG. 11 is a schematic illustration of the software architec-
ture and execution model for an embodiment of the network
smart card according to the invention operating using a single
task operating system. In the embodiment illustrated in FIG.
11, an Internet application 1101 executes in the same thread
as the communications module 1103.

FIG. 12 is a schematic illustration of an alternative soft-
ware architecture and execution model for a network smart
card 201 according to the invention operating using a multi
task operating system. Each Internet application 1101, e.g.,
1101(a) and (b), is a user process or thread. The communica-
tion module 1103 is part of the system. Because of limited
resources in smart cards, in one multi-tasking operating sys-
tem embodiment of the invention, the communication mod-
ule uses one system thread to reduce memory usage and to
avoid context switching. In both FIGS. 11 and 12 the arrows
that connect between the various software modules indicate
the calling hierarchy between these modules. In other words,
an arrow from a Module A to a Module B indicates that
Module A calls Module B or retrieves data from Module B.
Thus, the arrows are not data paths, i.e., data may pass from
one module to another along the direction of an arrow but may
also pass in the opposite direction.

The software architecture is very similar for the single task
operating system implementation of FIG. 11 and multipli-
tasking operating system implementation of FIG. 12. In both
embodiments, the communication module 1103 (shown as
communications thread 1203 in FIG. 12) is application inde-
pendent. In other words, the communications layer does not
require any knowledge of application specific information. To
the communications module 1103, any information transmit-
ted through it from an application to an external resource is
merely data. That data may be framed according to various
intermediary communications protocols such as TCP, IP, and
PPP, as well as the Peer I/O protocol. However, the commu-
nications module does not require any application specific
data. One advantage of so segregating the communications
module 1103 from the applications 1105 is that new applica-
tions may be added without any reconfiguration of the com-
munications module. This is a departure from previous smart
card communications schemes, notably, ISO-7816, in which
the communications package includes commands that are
within the applications” domain, e.g., file access.

The applications 1101 access the communication module
1103 via the popular BSD socket application programmer’s
interface (API) 1105 for managing Internet connections and
sending and receiving data. This technique satisfies the
requirement for enabling PC/workstation style Internet appli-
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cations. The communication module 1103 includes the link
layer 1107, the protocol layer 1109, and a net server module
1111.

The communication module 1103 includes the link layer
1107 and the protocol layer 1109. The communication mod-
ule 1103 also provides a net server 1111 that enables initial-
ization of the communication module 1103 and establishment
of network connection via PPP. The net server 1111, the
protocol layer 1109 and the link layer 1107 interact with each
other.

The protocol layer 1109 of the preferred embodiment
includes a TCP module 1113 and an IP module 1115. Other
modules, such as UDP, ICMP, and so on, can be added in
alternative embodiments. With only TCP and IP modules, the
TCP module 1113 can poll the IP module 1115 to get IP
datagrams. With more TCP/IP suite modules added in, the net
server 1111 may poll the IP module to get IP datagrams and
demultiplexes the packets to TCP, UDP, ICMP, and so on
according to the protocol type in the IP datagrams. Alterna-
tively, for incoming data, the net server 1111 interacts with
the IP module 1115, which polls PPP module 1117 and does
demultiplexing according to the protocol type to TCP, UDP,
ICMP, and so on. The TCP module 1113, for example, demul-
tiplexes the data to a socket 1125 according to port number.

The link layer 1107 is dependent on the I/O hardware of the
smart card 201 and the ISO standard that the smart card is
using. With current standard ISO 7816 smart cards, the link
layer 1107 includes a PPP module 1117, an AHDLC process-
ing module 1119, Peer I/O client 702, and an ISO smart card
/O module 1121 (for example, a module for handling
APDU). The PPP module 1117 establishes connection with
the Remote Access Server (RAS) on the host PC 705 that the
smart card reader is connected to. When this connection is
established, RAS becomes a router for the smart card, which
forwards IP datagrams transmitted between the smart card
and Internet clients or servers. The PPP module 1117 packs
the IP datagrams into PPP packets and unpacks PPP packets
to get IP datagrams. As is described in greater detail below,
the PPP module 1117 puts these IP datagrams in buffers 1123
that may be accessed by the other modules. For asynchronous
physical lines, the PPP protocol uses a framing technique
called asynchronous HDLC or AHDLC. The PPP module
1117 calls the AHDLC process module 1119 which forms
AHDLC frames for each PPP packet for transmission. The
input AHDLC frames are processed by the AHDLC module
to get PPP packets. The PPP module 1117 calls upon the Peer
1/O client 615 to provide a bridging function between the
lower link layer protocol and network protocols. The PPP
module 1117 provides the Peer I/O client 615 with PPP pack-
ets for transmission and receives PPP packets from the Peer
1/O module 615 of data received from the network.

For ISO 7816 smart cards, the Peer 1O protocol enables the
smart card 201 to handle full duplex Internet traffic and
enables the smart card 201 to be an Internet peer. The Peer [/O
client module 615 executes according to the Peer I/O client
finite state machine 1001 as explained in conjunction with
FIG.10. The Peer I/O client 615 sends and receives data from
the network via the smart card I/O module 1121. The smart
card [/O module 1121 is compliant with the ISO 7816. The 10
module 1121 sends and receives ISO 7816 APDU packets via
the communications channel to the host computer 217. The
payloads of APDU packets carry AHDLC frames transmitted
between smart cards’ link layer module 1107 and RAS on the
host PC.

To reduce memory usage, the incoming data processed by
the AHDLC module 1119 is put directly into a buffer chain
1123. This buffer 1123 is consumed by the PPP module 1117,
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the IP module 1115, and the TCP module 1113. The content
of'the bufter 1123 is then put onto one of several sockets 1125
by TCP demultiplexing performed by the TCP module 1113.
In this manner, the link layer process 1107 shares buffers with
the protocol layer 1109. In contrast, typical PC/workstation
implementations have link layers and protocol layers to man-
age different buffering schemes. Resource management is
described in greater detail below.

Hardware interrupts trigger input as well as output events.
An interrupt handler 1127 manages the low level input and
output. The interrupt handler 1127 actually takes bytes out of
the 10 hardware register for input and puts bytes into the 10
hardware register for output. The upper layer protocol sets the
expected data length for the interrupt handler. For ISO 7816
smart cards, the smart card /O module 1121 sets the expected
data length.

8.2. Execution Model for Single Task Operating System

With the single task operating system, all the smart card
software execute in one thread. The application 1101 calls the
net server 1111 to initialize the communication module 1103
and to establish network connection via PPP. The net server
1111 calls the PPP module 1117 of the link layer module 1107
to establish the network connection via the PPP protocol. The
application 1101 calls a socket API function 1105 when the
application 1101 has a communication request. The socket
API 1105 forwards the request to the TCP module 1113,
which calls Internet Protocol (IP) functions 1115. The TCP
module 1113 creates a mapping between the application 1101
and a socket 1125 based on Internet address and port num-
bers. Thus, the execution model is both application driven and
polling. For example, to receive data from the established
communication channel, the application 1101 calls the recv (
) function of the socket API 1105. The recv () calls the TCP
function corresponding to the recv ( ) function. The TCP
module 1113 then accesses the appropriate socket 1125 (from
the mapping previously made) to retrieve data, if any, for the
requesting Internet application 1101.

Even though operating in a single task operating system,
the communication module 1103 can serve multiple Internet
application protocols by opening multiple communication
channels. For example, the communication module 1103 may
serve both a web server and telnet. The Internet application
1101 calls socket API select () function to get the socket that
has received a message from the network. The Internet appli-
cation 1101 then performs a demultiplexing operation based
on the socket returned by the select( ) function to call the
Internet application that owns the socket, such as web server
or telnet. To enable serving multiple Internet application pro-
tocols in this manner, all the socket calls must be non-block-
ing.

8.3. Execution Model for Multi-Task Operating System

The execution model according to the invention for imple-
mentation of the invention in a multi-tasking operating sys-
tem has a thread 1201(a) and 1201(b) for each Internet appli-
cation 1101 running on the smart card 201 and a thread, the
communications thread 1203, for the communications soft-
ware.

With a multi-tasking operating system, the net server 1111
is the “main” function of the communication thread 1203.
The net server 1111 first initializes layers of the communica-
tion module. Then, the net server 1111 establishes a PPP
connection with the host computer 217 that the smart card 201
is connected to. Once connection is established, the net server
1111 enters an infinite loop that waits for events and processes
the events.

The socket API 1105 interacts with the communication
module 1103 via an inter-processes communication (IPC)
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mechanism provided by the multi-tasking OS kernel. The
application 1101 calls a socket API 1105 function when the
application 1101 has a communication request. The socket
API 1105 forwards the request to the communication module
1103 by sending an IPC request to the net server 1111. For
example, to receive data from an established communication
channel, the application 1101 calls the recv () function of the
socket AP11105. The recv () function of the socket AP1 1105
sends an IPC request to the net server 1111 with the request
type representing the function.

Beside user processes 1101, two other system modules
interact with the communication thread 1203, namely, an
interrupt handler 1127 and a timer handler 1129. Hardware
interrupts trigger input as well as output events. The interrupt
handler 1127 manages the low level input and output. The
interrupt handler 1127 sends an IPC that can be detected by
the communication module 1103 when an input or an output
with specified length finishes. The upper layer protocol set the
expected length of data for input or output. For example, for
ISO 7816 smart cards, the smart card I/O module 1121 sets
the expected data length for input or output.

The communication module 1103 listens to the IPC sent by
the interrupt handler 1127. There are two ways to implement
this:

The smart card 10 (SIO) module 1121 (for example, an
APDU module) is the listener. When the SIO 1121 is
listening, the communication thread 1203 blocks. This is
usually not a problem since the Peer I/O client 615 only
puts the smart card IO module 1121 into sending or
receiving and listening mode when the smart card 201 is
ready to send or receive. The Peer I/O server 613 on the
host computer 217 side will send immediately after it
receives the message that the smart card 201 is ready to
communicate some data. For ISO 7816 smart cards, the
Internet smart cards presented herein use status words as
a message to indicate to the Peer /O server 613 that the
smart card 201 is ready to communicate. The advantage
is that smart cards with a single task operating system
can use this mechanism as well.

The net server 1111 is the listener. When the net server
1111 receives an IPC call from the I/O interrupt handler
1127, the net server 1111 calls the TCP module 1113 or
IP layer 1115 to send or receive, which in turn interact
with other modules. The advantage is that the commu-
nication thread 1203 does not block in order to listen to
any events.

In addition to the IPC calls from applications 1101 (e.g.,
1101(a) and 1101(5), via socket API1 1105 and IPC calls from
1/O interrupt handler 1127, the net server 1111 also listens to
the timer interrupt handler 1129. This enables various proto-
col modules to handle different timeouts.

9. Resource Management

Memory resource, especially RAM, is scarce in smart
cards. At the time of this writing, the vast majority of smart
cards have less than 6K of RAM. Careful management of
memory resources is therefore critical for the smart card
software development. This section describes basic tech-
niques used to put rich communication and Internet function-
alities in a network smart card 201 according to the invention.

9.1. Buffer Management

The communication module 1103 of the Internet smart
card 201 in one embodiment of the invention features a
chained buffers mechanism to store and manage data. This
chained buffers mechanism has been used in BSD style TCP/
IP implementations and some embedded TCP/IP implemen-
tations (see, for example, Wright, G. R. and Stevens, W. R.,
TCP/IP Hlustrated, Volume 2, Addison-Wesley Professional
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Computing Series, 1995; Dunkels, A. “1wIP—A Light-
weight TCP/IP Stack,” http://www.sics.se/~adam/1wip/;
uC/IP, http://ucip.sourceforge.net/). The data structures of
different kinds of chained buffers are somewhat different, but
the basic mechanisms are similar. One embodiment of the
invention uses Packet buffers (pbufs) defined in 1wIP in a
manner to overcome the resource constraints of smart cards.

A chained buffer mechanism defines a data structure for a
buffer, which has a header portion that describes the buffer
and a payload portion that contains the data. The payload
portion can be in the same contiguous memory as the header
portion or can be a dynamically allocated memory. FIG. 13(a)
is a schematic illustration of a pbuf chain having two pbufs.

The pbufstructure 1300 consists of two pointers (next 1301
and payload 1303), two length fields (length 1305 and total_
length 1307), a flags field 1309 and a reference count 1311.
The next field 1301 points to the next pbuf 1300' for a pbuf
chain. The payload field 1303 points to the start of data 1313
in the pbuf. The length field 1305 represents the length of data
in this pbuf. The total_length field 1307 is the sum of the
length of the current pbuf and all length fields of the following
pbufs in the pbuf chain. The flags field 1309 indicates the type
of'the pbuf and ref field 1311 contains a reference count. In a
preferred embodiment, the two length fields are 16 bit
unsigned integers and flags and ref fields are 4 bits. The total
size of the pbuf structure depends on the size of a pointer and
the smallest alignment possible in the processor architecture
being used. For example, for a 16-bit architecture and 1 byte
alignment, the pbuf size is 9 bytes.

The buffer chain is much more flexible to use than using a
fixed buffer for data I/O since each buffer can be smaller.
Buffers can be chained together to provide a larger buffer.
Before the protocol layer processes the data, the data length is
unknown. With a fixed buffer, a large enough buffer has to be
allocated to hold the input data. Such buffer allocation is a
waste of memory resource if the incoming data is small. With
chained buffers, a buffer can be chained as needed.

For the resource constraint smart card environment, con-
trolling the resource usage is critical. The pbuf mechanism of
1wIP provides flexibility that allows allocating memory
dynamically in addition to memory pool. The communication
module 1103 uses only the memory pool mechanism that
reserves a fixed pool of small pbufs. The payload size of a
pbuf and the size of the pbuf pool are configurable according
to the memory resource available. A typical pbuf size is 128
bytes and pbuf pool size is 4. This configuration is sufficient
to establish PPP connection and provide a simple HTTP
server. Using pbuf pool avoids dynamically allocating or
freeing memory, which causes fragmentations of the memory
space. Allocating a pbuf from the pbuf pool or freeing a pbuf
to the pbuf pool are simple pointer manipulations, which are
efficient and do not fragment memory.

For an incoming packet, the AHDLC processing module
1121 allocates pbufs from the pool as needed. When a byte is
processed and the current pbuf'is full, a new pbuf is obtained
from the pbuf pool and is chained to the current pbuf. The new
pbuf becomes the current pbuf. The processed byte is put into
the current pbuf.

All the upper layer protocol modules, including PPP 1117,
1P 1115 and TCP 1113, use the pbuf chain allocated by the
AHDLC module 1119 for input processing. During PPP
negotiation, the PPP module 1117 uses pbufs for both input
and output. The PPP module 1117 allocates a pbuf from the
pbuf pool 1123 during the output processing. A pbuf'is freed
to the pool 1123 as soon as the input packet is processed or the
output packet is sent.
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The TCP module 1113 uses pbufs somewhat differently
from the PPP module 1117. During the input processing, the
TCP module 1113 demultiplexes the pbuf chain allocated by
the AHDLC module 1119 to the appropriate socket 1125 as
the receive buffer. An application 1101 calls the socket API
1105 to establish a communications session with some exter-
nal resource. As part of that initiation, a socket is allocated for
the communications session. When calling the recv( ) func-
tion the application 1101 passes in the call to the recv( )
function the descriptor of the socket (one of the sockets 1125)
and a reference to an application buffer. The TCP module
1113 finds the socket 1125 according to the socket descriptor
passed by the application 1101 during the recv() function call
and copies the number of bytes requested from the payload of
the socket’s receiving pbuf 1123 to the application buffer. The
first part of the payload is the protocol headers and the rest is
data. The socket keeps the receiving pbuf as long as the pbuf
s payload still has unread data. The application may make
multiple recv () calls. The socket frees the receiving pbuf
when all the data in the payload are read thereby releasing the
pbuf to the pbuf pool for reuse.

FIG. 13(b) is a schematic illustration of a pbuf chain as
used in the processing of output application data. The TCP
module 1113, when processing output, uses one pbuf 1300(a)
for the header. This pbuf'is not from the pbuf pool mentioned
above. It may come from a header pbuf pool if multiple
connections are desired or be a static pbuf if sending one
message at a time. The payload 1303(a) of the header pbuf
points to a small array just large enough to put protocol
headers. If the application 1101 has requested to send data
from a socket 1125, the header pbuf 1300(a) chains with
another pbuf whose payload 1303() points to the application
buffer 1305. The pbufs are freed after the TCP packet is
successfully transmitted or after a transmission attempt has
failed after repeated re-transmission. Because of the resource
constraints, the communication module 1103 is implemented
in one thread. There is no queue between the protocol layer
1109 and the link layer 1107. A pbuf or a pbuf chain passes
directly from the link layer 1107 to the protocol layer 1109 or
vice versa.

9.2. Protocol Feature Subset

Because of the resource constraints, in one embodiment of
the invention, only subsets of TCP, IP, and PPP are imple-
mented. These subsets are main features of these protocols,
which are necessary for the smart card presented in this paper
to communicate with other Internet nodes. This section out-
lines the current set of features supported by the smart card.
The smart card can support other protocol features with more
computational resources.

PPP: The smart card supports AHDLC processing and LCP
and IPCP finite state machines for PPP link layer and
network layer negotiations. Dynamic IP address is sup-
ported. The LCP Asynchronous Control Character Map
option and the IPCP IP-Compression Protocol option
will be implemented.

IP: The smart card processes basic IP datagrams.

TCP: The smart card implements the TCP finite state
machine. It supports reliable transmission, multiple con-
nections, PUSH and delayed ACK for interactive data
flow, timeout, round trip time (RTT) measurement, and
retransmission time out (RTO) computation using
Jacobsen’s algorithm.

10. Optimizations

There are several optimization techniques that are
employed on an embodiment of a network smart card accord-
ing to the invention to further reduce resource usage. These
techniques include in buffer AHDLC processing that reuses
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the buffer for AHDLC processing; transmitting with pbufs out pointer reaches the end of the buffer 1401(%). The process
that uses pbufs as transmitting buffers; data buffer transfer computes the length of the processed data from the following:

that enables application use the same pbuf mechanism as the
communication module; and buffer sharing with security
module that has the communication and security modules s Withinbuffer AHDLC process 1119, we can put incoming

Length=in pointer-beginning address of the buffer.

share buffers. data to pbufs directly at the input interrupt handler. The smart
10.1. In Buffer AHDLC Processing card I/O module 1121 (the APDU module for example with
The AHDLC processing module 1119 examines and pro- current smart card) allocates a pbuf when preparing for

cesses each character for incoming frames. The AHDLC pro- receiving. The input interrupt handler 1127 uses the pbuf

cessing module 1119 finds the frame delimiters (7E) to geta 10 directly and chains pbufs as needed. Hence the data goes from

frame. It finds each escape character (7D) and does an exclu- the hardware interface to application interface without any

sive-OR between the next octet and the fixed value 20. The copy. This greatly saves memory resource.

delimiters and escape characters are removed from the frame. 10.2. Transmitting with pbufs

Typically, the incoming data is in an input buffer and the The I/O hardware of smart card chips does not have dedi-

processed data is put into another buffer. The following illus- 15 cated buffers for transmitting or receiving data. The hardware
trates a typical AHDLC process for an input AHDLC frame. serial I/O module of the chip may only have a single register

The frame data is a PPP LCP configuration request without for both input and output. In the case of such smart cards, the
any options. smart card I/O layer 1121 (APDU layer in ISO case) can use
Consider the two bufters in Table 1: pbufs directly for transmitting. The transmission routine can
TABLE 1
Input data buffer:

7E FF 7D 23 CO 21 7D 21 7D 21 7D 20 7D 24 D1 BS 7E

Output data buffer:
FF 03 Co 21 01 01 00 04 DI BS
30
From the AHDLC processing perspective, the only corre- step over pbufs and put each byte into the hardware serial /O
lations between characters are the escape character (7D) and register for transmission. This avoids copying from pbufs to a
the octet after it. The delimiters and escape characters are transmission buffer. The Peer I/O client 615 pass pbufs

used and removed during the AHDLC processing. The length directly to the smart card I/O layer for output. This method
of'the processed data is always shorter than the original data. 35 reduces memory usage and enhances performance.

Therefore, the processed octets can be put in the same buffer 10.3. Data Buffer Transfer

as the original data. This is called the in-buffer processing. The BSD socket interface follows traditional Unix input-

FIG. 14 shows a sequence of in-buffer processing using the output interface style, which has copy semantics. The reason

above example. 2 for the copy is that the application and the operating system
Each one-dimensional array 1401(a) through 1401(f) rep- usually reside in different protection domains. For example,

for a send () call, the application 1101 allocates a buffer for
the data and the system copies the data to a buffer of the
TCP/IP stack. Onarecv () call, the application 1101 allocates
the buffer and the system copies data from the TCP/IP stack to
the application buffer. The copy requires doubling the
memory requirement per packet.

resent the same buffer with different data. The processed data
is put into the same buffer as the unprocessed data (the input
data). There are two pointers. The out pointer points to the
position of the octet to be processed and the in pointer points 45
to the position that the processed octet is to be put in. Initially,
both pointers point to the beginning of the buffer as shown in

1401(a). The first octet is 7E, which marks the beginning of a In the embodiments of the invention described herein
frame and does not need to be stored as processed data. above in conjunction with FIGS. 11, 12 and 13(a) and (), the

Therefore, the out pointer moves on to the next octet and the 50 PUt data is copied from the pbuf used in the communication
in pointer remains at the same position as shown in 1401(5). ~ module 1103 to the application buffer provided via socket
The next octet is FF, which is part of the AHDLC headerand ~ “P11105. However, the output data is not copied to the pbuf
is put to the in pointer position. Both in pointer and out pointer 1 the communication module 1103. A pbuf header 1300(5)
move to the next octets as illustrated in 1401(c). (Note itisnot ~ POInts (using payload field 1303(5)) to the application buffer
necessary to retain the AHDLC header.) The next octetis 7D, 55 1305 asils payload directly for output. This saves copy time

which s the escape character. The algorithm remembersithas 2. memory. To save memory for input, the application 1101
just seen 7D but does not need to store it as processed data. does notallocate memory for input data and manages the pbuf

Therefore, the out pointer moves to the next octet and in passgd out from the recv () fl..lnC.tiOIl. The recv() funcFion
pointer remains at the same position as illustrated in 1401(d). remains Fhe sameas befor f?’ which 1s.deﬁned as the following.
The next octet is 23. Since the previous octet is the escape 60 10t recv(int s, void *buf, size_t len, int flags);

character, the algorithm performs an exclusive-OR operation Before the buf may be an unsigned char * and pre-allocated
of 23 with 20 with the result 03, which is stored at the in by the application. With the change, the buf is struct pbuf *
pointer position. Both in pointer and out pointer move to the and is not allocated by the application. The buffer is allocation
next octets as illustrated in 1401(e). The next octet is CO, by the communication module above in conjunction with
which is not escaped and is stored in the in pointer position 65 FIGS. 13(a) and 13(b). The application 1101 reads from the
directly. Both in pointer and out pointer move to the next pbuf and de-allocates the pbuf after usage. This prevents

octets as illustrated in 1401(f). The process continues until the copying from pbuf to application buffer.
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10.4. Buffer Sharing with Security Module

A smart card 201 implemented according to the invention
may act as an independent Internet node. The card 201 also
implements a security layer to ensure secure communication
between the card and the remote Internet node. FIG. 20(a),
described in greater detail below, is a schematic illustration of
the software architecture for a network smart card with a
module for implementing the TLS protocol. Implementing
the security layer on the card sets the security boundary on the
card, while traditionally with smart cards the security bound-
ary is on the host computer. Having the security boundary on
the card provide much better security than having the security
boundary on the host or another computer in the network
because having the security boundary on the card protects
against security risks associated with the security of the host
computer being compromised.

From the communication module 1103 perspective, the
security module 2001 is part of the application. The security
layer 2001 uses socket API 1105 to send or receive network
data. It provides an API for its applications 1101. Using the
data buffer transfer technique described above, the security
module 2001 and the communication module 1103 can share
pbufs instead of copying data between the two modules. This
enhances performance and reduces memory usage.

11. Security

The infrastructureless network smart card 201 according to
the invention, in a further embodiment, implements secure
communication between the smart card and other network
nodes. Returning to FIG. 1, which is an illustration of the
prior art use of a smart card in a networked configuration and
the security boundary thereof. A smart card 101 is inserted
into a reader 107, which is connected to a host computer 109.
The host computer is connected to a network 105 to which a
remote computer 103 is also connected. If the network is the
Internet, the communication between the remote computer
103 and the host computer 109 is via TCP/IP. The host com-
puter 109 communicates with the smart card 101 using
APDU. Furthermore, if the communication is some form of
secure communication between the smart card 101 and the
remote computer 103, e.g., encrypted messages, the secure
communication is between the remote computer 103 and the
host PC 109 and the communication between the host PC 109
and the smart card 101 may or may not be secure. Because the
security boundary 111 is located on the host 109, the security
of'the communication is prone to attack at the host. Therefore,
it would be desirable to move the security boundary from the
host 109 to the smart card 101. Doing so would take the host
computer out of the security scheme and attacks against it
would not compromise the overall security of the communi-
cation.

FIG. 15 is a schematic illustration of an infrastructureless
network smart card 201 according to the invention used to
communicate in a secure fashion end-to-end with a remote
computer 219 wherein the security boundary is located on the
smart card. An infrastructureless network smart card 201
according to the invention provides the secure communica-
tion mechanisms whereby the communication is secure end-
to-end between the smart card and a remote PC 219, i.e., the
security boundary 1511 is located on the smart card 201. The
smart card may be connected to a host computer 217 as shown
in FIG. 15 or via one of the other deployment schemes illus-
trated in FIG. 2. The smart card 201 provides communica-
tions modules (as described above) for communicating with
the remote PC 219 using standard communication protocols,
e.g., TCP/IP and PPP. The smart card 201 further implements
necessary security mechanisms, e.g., implementation of the
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SSL and TLS protocols, whereby the network link to the
smart card is as secure as the smart card itself.

11.1. SSL/TLS Overview

Nearly all secure transactions over the Internet are carried
out using either Secure Socket Layer (SSL) or its successor
Transport Layer Security (TLS). These protocols provide a
mechanism by which data is authenticated and encrypted as it
flows through the underlying network communication links.
These links are considered insecure and open to attack by
third parties. Instead of achieving network security by chang-
ing the underlying transmission protocol, as done by IPSec,
or by modifying higher level application protocols, as done by
S-HTTP, SSL/TLS adds a separate security protocol layer
located between applications and underlying transmission
protocols. FIG. 16 is a schematic illustration of the SSL/TLS
security layer relative to the application layer and transmis-
sion layers. The Application Layer encompasses protocols
such as SMTP, HTTP, Telnet and FTP. The Application Layer
makes calls to the SSL/TLS layer for implementation of
secure communication. The SSL/TLS layer, in turn, is above
the transmission layer, e.g., TCP/IP.

As seen from FIG. 16, SSL/TLS requires a reliable, bi-
directional communication layer such as TCP.

For the reader’s convenience a short tutorial in SSL/TLS is
provided here. More detailed information about these proto-
cols may be found in references, such as, (Dierks, T., Allen,
C., “The TLS Protocol, Version 1.0”, IETF Network Working
Group. RFC 2246. See http://www.ietf.org/rfc/rfc2246 txt),
which is incorporated herein by reference.

11.2. Cryptography in SSL

The SSL protocol is built on top of existing cryptographic
services that have been well established and are considered
mathematically secure. A high level view and uses of these
services are outlined in the Table 2 below.

TABLE 2
Cryptographic
Service Use Protects Against
Authentication Prove Identity Forgery, digital

impersonation
Eavesdropping
Alteration during
transmission

Confidentiality
Message Integrity

Keep Secret
Verify information

The SSL protocol uses each of these cryptographic ser-
vices to establish a secure connection between client and
server systems.

Authentication is the process of identifying yourself to
another party. It proves that you really are who you say you
are. There is little or no value in achieving network security if
you are securing your communication with the wrong party.
In SSL, server side authentication is mandated by the proto-
col, where as client authentication is optional. Authentication
is done via the use of digital certificates. SSL supports RSA
and DSS algorithms. The certificates are sent in X.509 for-
mat.

Confidentiality is achieved by encrypting the data before it
is sent to the other party. Encryption is done using a symmet-
ric algorithm like DES, Triple-DES, RC4, etc. with different
key lengths. Client and server generate the symmetric keys
used for encryption and decryption by first exchanging a
secret. This secret is exchanged using one of two public key
algorithms: RSA or Diffie-Hellman.

Finally, message integrity is maintained by appending a
MAC to each message. In TLS, MAC is generated using
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HMAC, a standard method of computing MAC values. Both
MDS5 and SHA-1 algorithms are used in this process.

SSL ensures that each of these three cryptographic features
is maintained during an SSL session. If any cryptographic
feature is found to be compromised, the SSL session is closed.
For more detail on application of cryptography see, for
example, the authoritative book on this subject by Bruce
Schneier (Schneier, B., Applied Cryptography, 2nd Edition,
John Wiley & Sons, New York, N.Y. (1996)).

11.3. TLS 1.0 Protocol

Transport Layer Security, TLS 1.0 is a standard protocol
developed under the auspices of IETF. However, it involves
relatively modest, and incremental security improvements
over SSL 3.0. There is less difference between SSL 3.0 and
TLS, than there is between SSL 2.0 and SSL 3.0. In fact TLS
version sent in the handshake messages is 3.1, with 3 being
the major version and 1 being the minor version.

Some of the main differences between SSL 3.0 and TLS
1.0 are outlined in Table 3.

TABLE 3
Property SSL 3.0 TLS 1.0
Protocol version in handshake 3.0 3.1
message
Types of Alert messages 12 23
MAC non-standard standard, HMAC
Generating key material non-standard standard, PRF
Certificate Verification complex simple
Finished message Non-standard standard, PRF

The basic design of TLS has a notion of two distinct
phases: handshake phase and data transfer phase. During the
handshake phase, the client authenticates the server while the
server can optionally authenticate the client. They both estab-
lish a set of cryptographic keys which are then used to secure
the data during application phase. The handshake phase must
complete successfully before application data exchange can
take place.

FIG. 17 is a schematic illustration of the sequence of steps
that take place during a typical TLS handshake phase. The
two communicating nodes have specific roles as a client or as
a server.

.ClientHello. The client side initiates a TLS handshake by
sending the server a ClientHello message. The message
includes the proposed protocol version, a list of cipher
suites supported by the client, and a client random num-
ber that will be used in key generation process.

2. ServerHello. The server side responds with this mes-
sage, which has the following information: selects the
protocol version, selects the cipher suite, sends a server
random number used in key generation process, and
sends a session ID which can be used later by clientin its
ClientHello message to speedup subsequent hand-
shakes.

. Certificate. The server then sends its public key certifi-
cate in a Certificate message. This allows the client side
to authenticate the server, and also to get its public key.

4. ServerHelloDone. The server then sends this message to
indicate to the client that the latter should go ahead with
its validation of the information just sent to it.

5. ClientKeyExchange. The client sends the server this
message to begin the process of key exchange. This
message has a pre-master-secret that has been encrypted
using the public key of the server. The server public key
was sent in the Certificate message. The server side
decrypts the pre-master-secret using its private key. At

—_
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this point both the client and the server have all the data
they need to generate a set of session keys. This is done
by using a pseudo random function (PRF) as defined in
TLS 1.0 Specification. There are three inputs to this
PRF: client random number, server random number, and
pre-master-secret.

6. ChangeCipherSpec. Client sends this message to indi-
cate that it is ready to send data using agreed upon cipher
suite and keys.

7. ClientFinished. The client then sends this message to
indicate that it is done with handshake. This message
uses the cryptographic algorithm and keys selected in
this handshake to encrypt the data. The message itself
consists of a hash of all the handshake messages
exchanged so far.

8. ChangeCipherSpec. The server also sends this message
to indicate that it is ready to send messages using the
agreed upon cipher suite and keys.

9. ServerFinish. Finally the server sends a corresponding
Finish message to client. This message is encrypted
using the selected cipher suite, and carries a similar hash
of all handshake messages exchanged so far.

FIG. 18 is an illustration of a partial TLS handshake mes-
sage sequence during session resumption. As with the hand-
shake sequence described in conjunction with FIG. 17, the
two communicating nodes have specific roles as a client or as
a server.

FIG. 18 is a schematic illustration of the sequence of steps
that take place during a typical partial TLS handshake phase.
As with full TLS handshake described in FIG. 17, the two
communicating nodes have specific roles as a client or as a
server. A partial handshake is needed when resuming a pre-
viously established session.

1. ClientHello. The client side initiates a partial TLS hand-
shake by sending the server a ClientHello message. The Cli-
entHello message includes the session ID from a previous
session as well as a new client random number that will be
used in key generation process.

2. ServerHello. The server side responds with this mes-
sage. It either agrees to reuse the session ID passed in step 1
above, or rejects it. If the session ID is rejected, client has to
re-initiate a new full TLS handshake as described in FIG. 17.
If the session ID is accepted, the process continues with the
partial handshake.

3. ChangeCipherSpec. If the session ID is accepted, the
server recomputes key material using the new client random
value passed in step 1, and the pre-master-secret from a pre-
vious session. The session 1D to use is transmitted with the
ClientHello message in step 1. FIG. 17, step 5 describes how
this pre-master-secret was shared between client and server in
a full TLS handshake. Once the new key material is com-
puted, the server sends ChangeCipherSpec message to client
to indicate that it will now start using the new keys.

4. Finished. The server then sends a Finish message to
indicate to the client that the client should go ahead with its
validation of the newly activated key options.

5. ChangeCipherSpec. The client sends the server a
ChangeCipherSpec message to indicate that the client has
validated the new key options, and that it will use them for all
future message exchanges.

6. Finish. The client then sends the server a Finish message
to indicate that the client has completed its part of the hand-
shake.
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After concluding these steps, the two sides can exchange
application data using newly established keys.

There are two advantages to using TLS session resumption.
Both are particularly significant when using TLS in a resource
constrained device such as a smart card. Firstly, the number of
messages exchanged in session resumption handshake phase
is less than the corresponding number in full TLS handshake.
This translates into fewer communication round trip connec-
tions to the smart card, and therefore improves data through-
put. Secondly, since session resumption handshake is reusing
the pre-master-secret from a previous session, we do not need
to perform decryption using the server’s private key. Such
decryptions, as needed when using the RSA algorithm, can be
computationally intensive and have a tendency of not only
delaying communication response time, but also stretch the
limited RAM resource of a smart card. Performing a session
resumption handshake can make such RSA computations less
frequent. FIG. 19 is an illustration of the TLS Record Proto-
col. Once the handshake phase completes successtully, each
node can send application data to the other. During the appli-
cation data transfer phase raw data 1901 is divided into seg-
ments. A MAC is appended to each segment 1903 and 1903,
and the resulting record is encrypted using the keys and
algorithms established during handshake as described in con-
junction with FIG. 17. A header 1905 and 1905' is then
attached to this record and sent using the underlying TCP
layer.

The encrypted payload, consisting of data and MAC, and
the unencrypted header are collectively referred to as TLS
record 1907 and 1907'. It is the TLS record 1907 (and 1907")
that is actually transmitted. The header contains information
about the size of record.

11.4. Security of SSL and TLS

SSL have been in widespread use for almost a decade now.
These protocols are ubiquitous in its application to secure
web-based transactions. Although several flaws and short-
coming were found in SSL 2.0 protocol, SSL 3.0 was rede-
signed to correct these security flaws. TLS has further
enhanced the protocol security. Several detailed studies have
been done to analyze the security and robustness of SSL and
no major flaws have been discovered. There have been vari-
ous flaws reported in specific implementations of SSI. and
TLS, but not in the protocol itself. As such, SSL. and TLS are
considered valuable contributions towards practical network
communication security and are therefore desirable to imple-
ment in infrastructureless network smart cards.

12. Design of TLS for Smart Card

Transport Layer Security protocol, even when imple-
mented on enterprise systems with abundant system
resources, adds a considerable overhead in terms of perfor-
mance as well as computational requirements. This is particu-
larly true during the initial handshake phase of TLS protocol
when both client and server are engaged in a flurry of activity.
This activity consists of authenticating each other, selecting a
cipher suite, and finally computing various session keys. To
achieve this on the server side while using an infrastructure-
less network smart card, the infrastructureless network smart
card according to the invention includes an implementation of
the TLS protocol stack and various cryptographic services.

On a resource constrained device like smart card, the
effects of the overhead associated with authentication, select-
ing cipher suite, and computing session keys imposes a large
performance burden on the resource constrained device. The
biggest challenge is conservation of RAM, an extremely
scarce resource on smart cards as well as on other resource-
constrained devices. In one embodiment of the invention,
with these optimizations the combined RAM footprint of
TLS protocol and cryptographic layer is only 1.5 kilobytes.
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The infrastructureless network smart card TLS server side
implementation allows the smart card to act as a secure web
server using HTTPS protocol.

12.1. Protocol Feature Subset

Due to the limited resources on resource-constrained
devices, the first challenge is the selection of a minimal fea-
ture set from SSL/TLS protocol specification without com-
promising either the TLS specification or the compatibility
with existing standard clients, the main stream web browsers.
The preferred embodiment of the invention has been tested
successfully with three browsers, Internet Explorer,
Netscape, and Mozilla.

Most SSL Server implementations tend to support all three
protocol flavors of SSL: SSL. 2.0, SSL. 3.0, and TLS 1.0. A
preferred embodiment of the invention includes solely an
implementation of the TLS 1.0 specification. Because all
major browsers (e.g., Internet Explorer 6.0 and Netscape 7.0)
support TLS, and because the TLS protocol is more secure
than its predecessor protocols, it is sufficient to implement
only TLS. However, alternative embodiments include sup-
porting SSL, 2.0 and SSL 3.0 in the same implementation.
Furthermore, the techniques herein are applicable to future
versions of TLS.

FIG. 20(a) is a schematic illustration of the software archi-
tecture for an infrastructureless network smart card 201 with
amodule 2001 for implementing the TLS protocol. An Inter-
net application 1101 interacts with the TLS module 2001,
which, in turn, obtains communications services through the
communications system 1103 (described in greater detail
above) via the socket APl module 1105. The TLS module has
direct access to RAM 2003 and NVM 2005 to take advantage
of optimization techniques described herein below.

FIG. 20(b) is a further schematic illustration of the modules
that make up the TLS module 2001. The TLS module 2001
includes a swap module 2007 (described in greater detail
below), a crypto module 2009 for performing cryptographic
services, a handshake module 2011 for performing the hand-
shake functionality described above in conjunction with
FIGS. 17 and 18, and an 1/O module 2013 which provides
input and output services between the TLS module and other
components on the resource-constrained device.

In the preferred embodiment implementation of TLS 1.0
protocol on an infrastructureless network smart card 201,
compatibility with Netscape browsers required that the
implementation at least support SSL 2.0 Client-hello. This
implementation requirement is because Netscape 7.0 browser
sends its first handshake message, Client-hello, in SSL 2.0
format, even if TLS is selected as the highest protocol avail-
able on the browser. Accordingly, if future standard web
browsers uniformly do not include the limitation that Client-
hello is carried out in the fashion of SSL 2.0, it would be
possible to implement TLS on an infrastructureless network
smart card 201 without that feature.

The record format for SSL. 2.0 and TLS 1.0 is completely
different. The approach of sending the first handshake mes-
sage in SSL 2.0 record format allows an old server implemen-
tation, that only support SSL 2.0 protocol, to downgrade to
SSL 2.0. However, for new server implementations it adds the
extra responsibility to being able to at least read the Client-
hello message in SSL 2.0 record format, even if the server
implementation does not support SSL 2.0 protocol.

An infrastructureless network smart card may be imple-
mented using any one of several cipher suites supported by
TLS. The TLS 1.0 specification defines 32 cipher suites. Each
cipher suite is a combination of four cryptographic algo-
rithms, one for each of the following operations: authentica-
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tion, key exchange, symmetric encryption, and message
digest. In a preferred embodiment of the infrastructureless
network smart card there is no support for all 32 cipher suites.
According to TLS 1.0 specification the decision of which
cipher suite to use during a TLS session rests with the server
side. One embodiment of the invention uses the TLS_R-
SA_WITH_DES_CBC_SHA cipher suite for two reasons.
Firstly, it is available on all major browsers. Secondly, hard-
ware support for RSA and DES algorithms is quite common
on smart cards. This cipher suite uses RSA for both authen-
tication and key exchange. It uses DES for symmetric encryp-
tionand SHA1 as digest algorithm. Although SHA1 is used as
digest algorithm, TLS 1.0 specification requires that we also
support HMAC with both MD5 and SHA1. Current smart
card chips also have support for AES but TLS 1.0 specifica-
tion does not define any cipher suites with AES as symmetric
encryption algorithm.

As such, the feature subset for the server side implemen-
tationis TLS 1.0 specification, along with the ability to under-
stand SSL. 2.0 Client-hello message. TLS_RSA_WITH_
DES_CBC_SHA is the supported cipher suite is, as defined in
TLS 1.0 specification.

12.2. Use of Stack and Heap

RAM is a critical resource on smart cards and on other
resource-constrained devices. One of the approaches to
reducing RAM usage is to cut down on the process stack size
required to support TLS layer. A preferred embodiment of the
invention uses a customized heap management sub-system so
that buffers can be dynamically allocated and de-allocated as
needed. All memory required for maintaining TLS context
state and for performing cryptographic operations is allocated
dynamically on the heap. There are very few local variables in
functions, and the call stack depth is intentionally kept as low
as possible. This allows the TLS layer to use no more than 200
bytes of stack space. The heap space for the TLS layer is fixed
and allocated at start up time from a RAM pool. The TLS
server implementation requests buffers from this heap on an
as needed basis and then frees them once the task is complete.
The same RAM space can then be used for other operations.
Since the TLS state machine knows exactly when it is safe to
free a buffer, pre-mature and accidental buffer release is not
an issue.

12.3. Buffer Reuse

As an additional optimization of dynamic heap manage-
ment, the same allocated buffer can be used in more than one
context without being freed. This saves the overhead of de-
allocating and then allocation the buffer from the RAM pool
again. However, this kind of optimization has to be done
extremely carefully. In one embodiment of the invention, in
the TLS server implementation 2001 buftfer reuse is employed
in a number of places. Examples of this approach are the
following:

During the full handshake phase, pre-master secret and the
master secret use a single common buffer. Although both
values are critical during the handshake, they are not
used at the same time. Once master secret has been
computed from pre-master secret the latter can be dis-
carded. This property allows us to use the same buffer to
hold two values at different times.

While processing Client-key-exchange message, the value
of'encrypted pre-master secret is not copied to a separate
buffer. Instead it is kept in the same global read buffer
used for reading all incoming TLS records. The 67 byte
of this buffer is the starting point of encrypted pre-
master secret. The length of this encrypted data is same
as RSA key size, namely, 128 bytes for a 1024-bit RSA
key. The subsequent RSA decryption operation is per-
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formed by treating 6” byte of read buffer as the start of
cipher text input data. A preferred embodiment includes
logic to ensure that the data in the read buffer is not
modified until RSA decryption is complete.

When performing DES encryption and decryption the
same buffer is used for input as well as output. DES
operations in CBC mode are performed on 8-byte block
boundaries. Once the input data is used for an 8-byte
computation it is not needed again for subsequent com-
putations. As such it is safe to store the output value in
the same buffer. This eliminates the overhead of having
to allocate an additional buffer for DES.

12.4. Swapping of Context to NVM

While buffer reuse technique reduces the RAM footprint in
some cases, it does not cover all scenarios. There are times
during the handshake process when a lot more information
needs to be kept in memory than the allocated RAM pool will
allow. In these situations a preferred embodiment swaps
unused data from RAM to non-volatile memory (NVM) of
the smart card. NVM is much more abundant than RAM on a
smart card. The RAM buffer is reassigned to hold some other
data and perform a different set of computations. Once this set
of computations is complete, the saved data is reloaded from
NVM and RAM context is restored to its original state.

FIG. 21 is an illustration of swapping a data block from the
RAM pool to NVM.

Swapping data from NVM to RAM may appear to be an
all-encompassing solution that can eliminate all problems
associated with limited RAM. However, its use needs to be
studied carefully and applied in a calculated manner. There
are two reasons for this.

Firstly, the TLS module 2001 identifies blocks of data that
are large enough to justify the overhead of swapping, but are
disjoint enough so that they do not need to be in RAM con-
currently. Secondly, swapping to NVM is a performance criti-
cal operation. While reading from NVM may take the same
amount of time as reading from RAM, writing to it is much
slower. As such swapping to NVM should be used in only
those situations that justify this overhead.

FIG. 21 illustrates the process of swapping to NVM per-
formed by the TLS module 2001, particularly, in one embodi-
ment, the swap module 2007. There are four stages during the
swap process, each indicated by letters ‘a’to d’.

a) This is the initial stage. A buffer area, indicated by the
crosshatched rectangle 2101 in RAM area 2003 being
used for some computation. Once the computation
reaches a steady state this buffer 2101 can be swapped
out. The steady state in this case when the smart card is
notusing RAM for any data processing, but will need the
data currently in RAM at a later stage.

b) Inthis stage the data stored in RAM buffer 2101 has been
written to NVM as NVM buffer 2103. The same area in
RAM,; i.e., RAM buffer 2101 is free for use by some
other computation. As pointed out herein above, writing
to NVM is a costly operation. This accounts for the
performance overhead associated with swapping data in
RAM buffers into NVM.

¢) In this stage the TLS module 2001 or another module of
the infrastructureless network smart card 2001 has
added some new data in the RAM buffer 2101 as indi-
cated by the crosshatch. It is being used for some other
computations. Note that the data from the original RAM
buffer 2101 is still in NVM 2005 in buffer 2103.
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d) The computations of stage ‘c’ are complete and the swap
module 2007 has reloaded our original RAM buffer
2101 from NVM. The original context has been restored.
Note that stage ‘d’ is identical to stage ‘a’.

In the preferred embodiment TLS 1.0 server side imple-
mentation 2001, swapping to NVM is done while decrypting
pre-master secret using RSA private key. The decision to
swap at this stage of TLS handshake meets the above identi-
fied criteria for buffer swapping. During decrypting pre-mas-
ter secret, two distinct buffers that are vying for RAM 2003
resources, but they do not need to use the RAM 2003 simul-
taneously. These two buffers are the TLS context buffer which
holds information about the state of TLS handshake, and the
RSA buffer which decrypts pre-master secret sent by the
client. While the TLS module 2001 is performing RSA
decryption it can safely swap TLS context buffer to NVM.
The overhead of swapping to NVM is justified at the pre-
master secret decryption stage for three main reasons:

First, both the TLS context buffer and RSA buffer use
considerable RAM, and not using the swapping
approach would increase the RAM requirement by 546
bytes. See Table 4 for a detailed description of what
fields of TLS context need to be swapped.

Second, RSA decryption is done only during a full hand-
shake. This happens when a client browser connects to
our TLS server for the first time. For example when a
new browser instance is launched and we connect to a
secure web server. After that we use partial handshake
where the master secret is reused to generate a new set of
session keys. Since a new master secret is not exchanged
between client and server, there is no need to perform a
costly RSA decryption.

Finally, RSA decryption by itself is computationally inten-
sive, requiring considerable time. The time spent in
swapping the RAM bufter to NVM is only a fraction of
the time it takes to perform RSA decryption. This is
particularly true of devices that do not have a fast hard-
ware cryptographic accelerator. Therefore, the overhead
of NVM swap is not that noticeable.

Table 4 outlines the information in the TLS context that

needs to be swapped to NVM (all sizes are in bytes):

TABLE 4

Field Name Size Description

socket 4 Underlying communication socket
used for I/O of TLS records

client 1 Client browser we are talking to, e.g.
IE, Netscape, etc.

hs.state 1 Next handshake state

hs.verifyData 20 Verify Data buffer. This holds the
MAC of all handshake messages

keyGen.cRandom 32 Random value sent by client, used in key
generation process

keyGen.sRandom 32 Random value sent by server, used in key
generation process

tlsMD5Ctx 88 MDS5 context for computing a rolling
HMAC of handshake messages

tIsSHACtx 92 SHALI context for computing a rolling
HMAC of handshake messages

cSequence 2 Client sequence number

sSequence 2 Server sequence number

buffer 200 Last TLS record buffer read before
swapping the context

key 72 Key material for current session

12.5. MAC Computation during Handshake

TLS 1.0 specification requires that both client and server
maintain a hashed MAC of all messages they exchange during
their handshake phase. This helps prevent man-in-the-middle
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attacks on TLS protocol. Some implementations of TLS con-
catenate all handshake messages in a dedicated global buffer
and then use it to generate the MAC. On a resource con-
strained device such as a smart card, limitation of available
RAM and the performance overhead of writing to NVM,
make concatenation of all messages in a large buffer an
impractical solution.

In one embodiment of the invention the TLS module 2001
maintains a rolling hashed MAC of all handshake messages.
Each incoming handshake message is added to the MAC, and
so is each outgoing message. The TLS module 2001 main-
tains two hash contexts, one for doing MAC using MDS5, and
the other for doing MAC using SHA1. To digest a message,
the TLS module 2001 calls a hashing update () function on
both these contexts. As the last message is sent or received the
TLS module 2001 calls the final ( ) hashing function on each
of'the two contexts and then use the resulting hash values of
16 bytes for MDS5 and 20 bytes for SHA digest in pseudo
random function (PRF) to get a 12 byte Finish Data. The
details of PRF are part of TLS 1.0 specification. This 12-byte
value is then compared with the value computed by client to
make sure that handshake negotiation did not suffer from a
man-in-the-middle attack.

However, because of the sequence of handshake messages
while computing Client Finish data in a full handshake, and
Server Finish data in a partial handshake, the TLS module
2001 performs one additional task to maintain a rolling MAC
during handshake. During a full handshake, when a client
sends its Client Finish message it has completed the hand-
shake from the client side. As such it send the “finish” data as
part of this message. On the server side, in order to verify this
“finish” data the TL.S module 2001 calls final () on both hash
contexts (MDS5 and SHA1) and then uses PRF to obtain the
12-byte “finish” data. However, the TLS module 2001 also
sends one more handshake message, Server Finish, which
needs to be digested in the MAC. The problem is that once the
TLS module calls final () on a hash context it cannot use it to
digest any more messages. The same problem arises during
partial handshake. This time the TLS module 2001 sends
Server Finish message before receiving Client Finish mes-
sage.

To solve this problem the TLS module 2001 contains logic
to perform a combination of buffer swapping techniques.
When computing Client Finish message during full hand-
shake the TLS module carries out the following steps:

Save MDS5 context to NVM.

Call final () on the MDS context to get 16-byte final hash

value.

Restore MD5 context from NVM.

Save SHA1 context to NVM.

Call final () on the SHA1 context to get 20-byte final hash

value.

Restore SHA1 context from NVM.

Use the MD5 hash and SHA1 hash values to compute

12-byte client finish data.

Compare this data against the value received in Client
Finish message.

When computing Server Finish message during partial
handshake the TLS module carries out the following steps:

Save MDS context to a swap buffer in RAM.

Call final ( ) on MDS5 context to get 16-byte hash value.

Restore MD5 context from temporary swap buffer in

RAM.
Save SHAL1 buffer to the same temporary swap buffer in
RAM.

Call final ( ) on SHA1 context to get 20-byte hash value.

Restore SHA1 context from swap buffer in RAM.

Use MDS and SHA1 hash values to generate 12-byte server

finish data. Send this to client in Server Finish message.
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In the Server Finish case of partial handshake, the TLS
module 2001 uses a temporary swap buffer in RAM 2003
instead of swapping to NVM 2005. This is because RAM
overhead of partial handshake is less than that of a full hand-
shake. The TLS module 2001 therefore has some RAM buft-
ers that are available during partial handshake that are not
available during a full handshake. Moreover, partial hand-
shake happens much more often than a full handshake. To
avoid the performance overhead of writing to NVM the TLS
does not do so for partial handshake.

12.6. Application Data I/O

Once TLS handshake is complete, the TLS module 2001
establishes a set of session keys, which can be used to encrypt
and decrypt application data. Client and server can now begin
to exchange data in a secure manner. On the server side of
TLS implementation, receiving data from client presents a
unique challenge on resource-constrained devices like smart
cards. The issue is size of receive buffer in which TLS record
is read from underlying socket.

FIG. 22 is an illustration of the process of reading a TLS
record that is larger than the buffer available on a resource-
constrained device for TLS records.

To reduce RAM footprint the TLS receive buffer 2201 is
limited to 200 bytes. However, some clients implementing the
TLS protocol send TLS records 2203 with much larger sizes.
For example, IE and Netscape browsers will send a complete
GET request in a single encrypted TLS record. The size of
such a record can be on the order of 500 bytes. Since sym-
metric encryption and MAC are applied to the complete
record, the challenge on resource constrained devices is to use
a 200-byte TLS context receive buffer to read TLS records of
larger sizes. Reading a TLS record involves decryption as
well are verification of MAC.

This problem may be solved by either of two distinct
approaches that are described herein below.

Performance Critical Approach

Error Critical Approach

In performance critical approach, an application can
request that TLS 1/O module 2013 make data available to the
application as soon as data is read. At this point the TLS
record may not have been read completely and, therefore, the
MAC over entire TLS record may not have been verified. The
application, however, accepts the delayed notification of
MAC verification to get faster access to data. In the Error
Critical approach, the application can request that no data
should be passed to it until MAC integrity has been verified
over the entire TLS record. This is a safer application inter-
face, but the application has to wait until the TLS record has
been processed before data is passed to it. The TLS I/O
module 2013 supports both these approaches. Any applica-
tion can pick either one to suite its needs.

FIG. 23 is an illustration of the first approach to reading
large TLS records while using a small TLS buffer, which is
called the performance-critical approach. In the perfor-
mance-critical approach the TLS I/O Module 2013 reads the
TLS record in blocks 0of 200 (or less) bytes. First the TLS /O
Module 2013 determines if the TLS Record header has been
processed by a previous iteration through the TLS record, step
2301. If the Record header has not been processed, it is read
and the record size is determined, step 2303.

Either way, if the remaining number of bytes or the record
size is not less than or equal to the size of the TLS buffer 2201,
e.g., 200 bytes, steps 2305 and 2307, respectively, the number
of bytes that will fit in the TLS buffer 2201 (e.g., 200 bytes)
are read and the record is flagged as partially read, step 2309.
Otherwise, the entire record, step 2311, or the remaining data,
step 2313, is read.
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After each read, the incoming data is decrypted, MAC
context is updated, initialization vector is updated, and plain
text data is returned to the application, steps 2313, 2309, and
2311.

When the final block of data is read from TLS record, the
TLS module 2001 performs an additional step of verifying the
MAC over the complete TLS record, steps 2315, 2317. If the
MAC fails an error is flagged, step 2319, 2321. In this
approach the application layer obtains data as soon as the data
is read without having to pay the penalty of larger RAM
buffers. However, since MAC verification is not possible until
the entire TLS record has been read, any errors in secure
transmission are not flagged until we read the entire record
steps 2323, 2325. In most applications this slight delay in
receiving a transmission error is acceptable, particularly if the
application request this behavior to improve performance.

FIG. 24 is an illustration of the second approach to reading
large TLS records while using a small TLS buffer, which is
called the error-critical approach. In this approach an appli-
cation 1101 can request that no application level data is
returned to it if there is a MAC related error in transmission of
data. To provide this functionality, the TLS I/O Module 2013
still uses a 200-byte read buffer from TLS context. However,
the TLS I/O Module 2013 successively reads the entire TLS
record in the 200-byte buffer and then writes or appends it to
a buffer in NVM 2005.

The process controlling the TLS I/O Module 2013 through
the second approach starts by checking whether the TLS
Record Header has been processed, step 2401. If the record
header has been processed, the TLS /0O Module 2013 updates
the record header, reads data from the NVM 2005, and return
the read data to the application 1101, step 2403. If the record
header has not been processed by a previous iteration through
the TLS buffer 2201, step 2401, the TLS module 2001 reads
the header and determines the record size, step 2403. If the
record size is less than or equal to the size of the TLS buffer
2201, e.g., 200 bytes, step 2407, the TLS module 2001 reads
the entire record, decrypts it and verifies the MAC, step 2409.
If the record size is greater that the size of the TLS buffer
2201, step 2407, then the TLS I/O Module 2013 reads the
number of bytes that will fit into the TLS bufter, e.g., 200
bytes, decrypts that amount of data, writes that data to the
NVM, and verifies MAC, step 2411. The TLS /O Module
2013 uses the NVM buffer to decrypt data and then verify
MAC. On subsequent read calls, the pending data in NVM is
returned directly without any need for decryption or MAC
verification. For the path where the record size is too large to
fit in the TLS bufter 2201, the record is flagged as partially
read, step 2417. If the record was small enough to fit in the
TLS buffer 2201, the TLS record header is flagged as empty,
step 2419. If the MAC succeeds, steps 2413 and 2415, for all
cases, i.e., whether a part of the record or the entire record has
been read, the TLS I/O Module 2013 returns the data to the
application 1101. At the conclusion of processing the entire
buffer, the TLS 1/0 Module 2013 has returned the requested
amount of data to the calling application 1101. For a read
request, the TLS 1/0 Module 2013 repeats the process shown
in FIG. 24 until all data in NVM buffer is returned. The
second approach provides a much safer application interface
but requires the overhead of writing to NVM.

13. Secure Web Server using TLS

One example of an application 1101 may be a secure web
server. The implementation of TLS 1.0 library provides a
simple application level interface, which is used by an embed-
ded web server application to communicate with standard
web browsers over HT'TPS. The TLS 1.0 application level
interface resembles the BSD style socket interface. The only
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differences are the pointer for TLS context and buffer reuse
optimization flags. When setting the flag for buffer reuse, the
secure web server uses the same buffer for application data
1/0 asused by TLS layer. This cuts down on the RAM require-
ments for web server.

13.1. TLS Interface

The secure web server application uses the following pub-
lic functions to interact with the TLS 1.0 server library. All
other details of TLS implementation are hidden behind these
interfaces:

tlsResetCtx( ... )

tlsAceept( ... )
tlsSend( ... )
tlsRecv(... )

13.1.1. tIsResetCtx( )

This function does the work of resetting a specified TLS
context. The context is reset in any one of three possible ways
depending upon the value of flag argument. The complete
signature of this function is:

s_int8 tlsResetCtx(tlsContext_t *tlsCtx, u_int8 flag)

>

where, tlsCtx is a pointer to the TLS context data structure
that needs to be reset. The f lag argument dictates how the
reset should work. It can have the following values:

TLS_RESET_INIT. When flag is set to this value, the TLS
context is initialized for first time use. The process con-
sists of resetting MD5 and SHA1 contexts, clearing
record header information, clearing the input/output
buffer, and initializing other data fields that maintain the
state of TLS context during handshake phase and actual
application data transfer phase.

TLS_RESET_RSA. When flag is set to this value, the TLS
context information is saved to NVM so that the RAM
buffer occupied by TLS context can be reassigned for
other tasks—in this case for RSA computation.

TLS_RESET_TLS. When flag is set to this value, the TLS
context information is retrieved from NVM and restored
to the TLS context in RAM.

The function returns either TLS_SUCCESS or TLS_ER-

ROR to indicate success or error respectively.

13.1.2. TlsAccept( )

This function does the critical task of performing TLS
handshake with client. It negotiates a cipher suite and estab-
lishes various session keys for actual data exchange. Both full
and partial handshakes are handled in this function. The deci-
sion on whether to do full handshake, or perform a computa-
tionally less expensive partial handshake is taken dynami-
cally during the initial stage of handshake message exchange
with client browser. The complete signature of this function
is:

s_int8 tlsAccept(tlsContext_ t *tlsCtx) ;
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where, tlsCtx is a pointer to the TLS context data structure.
The function returns either TLS_SUCCESS or TLS_ ERROR
to indicate success or error respectively.

13.1.3. tlsSend( )

This function is the equivalent of the BSD socket API
send(). It sends application data by using the currently estab-
lished TLS cipher suite to encrypt the data. Users are expected
to have called tls Accept( ) to establish a valid TLS session
first The complete signature of this function is:

s__int16 tlsSend(tlsContext_ t *tlsCtx, unsigned char
*pData,
s_intl6 size, u_int8 flag) ;

where, tlsCtx is a pointer to the TLS context data structure,
pData is the starting address of data to be sent, size is the
length in bytes of data to be sent, and flag is an optimization
flag to allow buffer sharing on resource constrained devices.

The flag argument can be set to the following two options:

TLS_COPY_OFF

TLS_COPY_ON

To save RAM buffers, this implementation uses input/
output buffer from TLS context data structure to prepare the
encrypted TLS record for transmission. When the flag option
is set to TLS_COPY_ON the raw data pointed to by pData is
copied to this TLS context i/o buffer at the appropriate loca-
tion. It is the caller’s responsibility to allocate space for raw
data. However, since we are on a resource constrained device,
users of this function, like our secure web server, may want to
use the same TLS context i/o buffer to gather the raw data in
the first place. If this is the case the following rules need to be
followed:

Set flag argument to TLS_COPY_OFF.

The starting address of raw data should be the 14” byte of
the TLS context /O buffer. The first 13 bytes are
reserved for use by TLS library as it prepares the raw
data for encryption.

The trailing 28 bytes of the TLS context I/O buffer should
not be used by application raw data. These bytes are
reserved for padding data and for appending HMAC
digest while formatting the TLS record.

Due to these requirements the size argument should be at
least 41 bytes less than the size of TLS context [/O buffer
array. If size argument is greater than this value, and
TLS_COPY_OFF flag is used, the complete data will
not be sent.

The return value of this function indicates the size of raw
data sent to client. This is not the size of actual data written to
underlying socket. The actual data includes TLS record
header and encryption and MAC overhead. In case of an error
the return value is -1.

13.1.4. tlsRecv()

This function is the equivalent of the BSD socket API
recv( ). It reads application data by using the currently estab-
lished TLS cipher suite to decrypt the data. Users are expected
to have called tlsAccept( ) to establish a valid TLS session
first. The complete signature of this function is:

s__int16 tlsRecv(tlsContext_t *tlsCtx, unsigned char
**pData, s__intl6 size, u__int8 flag) ;

where, tlsCtx is a pointer to the TLS context data structure,
pData is the pointer that receives the data, s i z e is the length
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in bytes of data to be read, and flag is an optimization flag for
resource constrained devices. The flag argument can be set to
the following two options:

TLS_RECV_FAST. When this flag is used, and size of TLS
record is larger than that of TLS context I/O buffer, data
is returned to caller without verifying the integrity of
MAC. The MAC is verified downstream when all data in
TLS record is read. The MAC verification status is,
therefore, deferred to make data access fast for calling
application.

TLS_RECV_SAFE. When this flag is used, we read the
complete TLS record into a dedicated buffer in NVM.
Message integrity is checked by verifying the MAC. The
decrypted data is then returned to calling application.
This approach is safe but slow since it involves writing to
NVM.

Upon return from this function pData points to the start of
decrypted data inside TLS context I/O buffer. It is the caller’s
responsibility to copy this datato a separate buffer if required.
The data is overwritten at the next tlsRecv () call. The func-
tion returns the number of plain text bytes that were read and
are accessible through pData pointer. In case of an error, the
return value is -1.

13.2. Buffer Sharing

A critical element of our secure web server design is to
optimize RAM usage by sharing buffers with TLS context.
The pseudo C code below describes a usage scenario where
TLS public interfaces are used to connect to a client over
HTTPS connection. Both tlsRecv () and tlsSend () calls use
flags to enable buffer sharing between web server and TLS
layer.

/* Create and initialize TLS context data structure */

tlsContext_t *tlsCtx ;

tlsCtx = (tlsContext_t *) malloc(sizeof(tlsContext_ t),
MM_RAM) ;

tlsResetCtx(tlsCtx, TLS__RESET__INIT) ;

while (1)

/* Wait for a BSD socket connection from client */
bsdSocket = accept(listenerSocket, ...) ;

/* Pass BSD socket to TLS context */
tlsCtx—>socket = bsdSocket ;

/* Perform TLS handshake with client */
tlsAccept(tlsCtx) ;

/* Read client request, use one or more tlsRecv calls

*/

while (more data in request)

len = tlsRecv(tlsCtx, pData, 100, TLS__ RECV__FAST) ;

/* Send response to client, one or more tlsSend calls */
while (more data to send)

Copy N bytes of data to &tlsCtx—>buffer[13]
tlsSend(tlsCtx, &tlsCtx->buffer[13], N, TLS_COPY__OFF)

>

/* Close BSD socket */

The TLS context data structure is allocated dynamically
from a heap assigned to TLS layer. The MM_RAM option in
malloc( ) call indicates that the allocation should be done in
RAM instead of NVM

13.2.1. Reading Request

Once TLS layer has established session keys with the client
browser through the process of negotiating a full or partial
handshake, we can exchange application data with the
browser. The first step in data exchange is to read HTTPS
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request sent by the browser. This is done by making succes-
sive calls to tlsRecv ( ) with the flag argument set to
TLS_RECV_FAST. By doing so we avoid the overhead of
writing the complete TLS record to NVM first. Since each call
to tlsRecv () returns a section of the request data using the
same TLS context I/O buffer, we parse that portion of request
before making another call to tlsRecv ().

Although this approach delays the error notification for
MAC related errors, it does not affect the security of web
server. This is because we do not send any data to client
browser until we have read the complete request message. By
that time we have read the complete TLS record and any MAC
error, if present, has been flagged to us by TLS layer. To check
the end of a request message we look at the last four bytes
after each tlsRecv () call. A sequence of the following hexa-
decimal data as last four bytes indicates the end of HTRTPS
request; 0x0D, 0x0A, 0x0D, 0x0A.

13.2.2. Sending Response

Once the complete request has been read, we prepare our
response to the browser and call tlsSend () function. To save
RAM buffer the response is prepared using TLS context [/O
buffer, and flag argument in tlsSend ( ) function is set to
TLS_COPY_OFF. This not only cuts down on RAM usage,
but also is faster since there is no subsequent need to copy our
raw data into TLS context I/O buffer. The raw data is already
placed in TLS context I/O buffer starting at the 14” byte, i.e.
&tlsCtx->buffer[13].

13.3. Static and Dynamic Content

The secure web server built on TLS layer demonstrates
serving two types of content—static and dynamic. Static con-
tent are simple HTML files or other graphics files that are
already present on the smart card file system. On the other
hand, dynamic content is generated “on-the-fly” based on
some request by a client. To generate it the web server
launches the corresponding application and passes any user
supplied arguments to it. The output of this application is sent
to the client browser using the encryption mechanism pro-
vided by TLS layer.

The web server distinguishes between requests for
dynamic content from those requesting a static file, by parsing
the URL string. If the URL string has a reference to an
application in the cgi-bin directory, it is treated as a request for
dynamic content. An example of dynamic content is a Linux
like shell that is invoked as a CGI application by web server.
The argument to this shell application is the shell command
itself, along with its own set of arguments. Once the shell
command is run, the result is formatted and sent to client
browser in a secure manner using TLS.

13.4. Browser Differences

There are some subtleties in how various client browsers
connect to a web server using HT'TPS. Two ofthese subtleties
between IE and Netscape need to be considered when writing
a secure web server using TLS layer.

The first difference is in the format of ClientHello message
sent by a client browser. When TLS 1.0 is selected as the
highest protocol supported, IE sends the first ClientHello
message in TLS record format. The major and minor versions
are set to 3 and 1 respectively. However, with the same set-
tings on Netscape browser version 7.0 (Netscape does not
support TLS 1.0 protocol in browser older than version 7.0.),
the first Client Hello message is sent in SSL. 2.0 record format.
The protocol version proposed in the message is still TLS
(major version field set to 3, and minor to 1), but the message
itself is in the record format of SSL. 2.0 protocol. TLS 1.0 and
SSL 2.0 have drastically different record formats. As such, in
order to communicate with Netscape browsers, a TLS server
has to be able to read and parse the Client Hello message in
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SSL 2.0 format. Once we respond to Netscape browser with
our Server Hello message and set the protocol version to 3.1,
all subsequent messages are in TLS 1.0 record format.

The second difference occurs during server authentication
when performing a full TLS handshake. In case the server
certificate has a problem, IE and Netscape behave quite dif-
ferently. The server certificate can have a problem for several
reasons, particularly during development stages when certifi-
cates are generated locally for testing. The problem could be
because the certificate has expired, or the holder’s domain
name does not match the domain name where web server is
running, or the Certificate Authority that is signing the cer-
tificate is not trusted by the browser. In any case, once a
problem is found with the certificate the response from IE and
Netscape is quite different. TLS 1.0 specification is silent on
this issue so we have to handle both cases.

In case of Netscape, the response is immediate. When the
browser finds a problem with the certificate it has received in
TLS Certificate message during handshake, it pops up a warn-
ing dialog box for the end user. The dialog box has details
about the certificate and it asks the user what to do. If the user
chooses not to proceed any further, the TLS handshake is
abandoned and underlying BSD socket connection is closed.
However, if the user chooses to ignore this warning and
accept the server certificate, Netscape continues with the rest
of handshake as if nothing happened. After handshake com-
pletes it exchanges application data with web server.

In case of IE, the behavior is rather peculiar. If IE receives
a certificate in the TLS Certificate message, that has a prob-
lem, it takes no immediate action. Instead it allows the hand-
shake to proceed normally. Once the handshake completes
successfully, it pops us a warning dialog box to the end user.
As with Netscape, the user is asked what to do with the
certificate. If the user chooses not to continue TLS handshake
is abandoned and the socket connection is closed. If on the
other hand user chooses to continue, IE still closes the exist-
ing socket connection, opens a new socket connection and
then sends a fresh ClientHello message. The new ClientHello
message includes the session ID from previous full hand-
shake. This is a request to do a partial handshake. Once this
partial handshake completes IE starts exchanging application
data with web server.

Although specific embodiments (e.g., an infrastructureless
network smart card implementing communications and secu-
rity modules based on TCP/IP, PPP, TLS, AHDLC, APDU) of
the invention has been described and illustrated, the invention
is not to be limited to the specific forms or arrangements of
parts so described and illustrated. For example, the invention
is applicable to other resource-constrained devices and is
applicable to other communications protocols. The invention
is limited only by the claims.

What is claimed is:

1. A method of secure communication between a smart
card and remote network nodes over a network wherein the
smart card acts as a standalone network node and the remote
network nodes communicate with the smart card using un-
modified network clients and servers and wherein the smart
card has a central processing unit, a random access memory,
anon-volatile memory, a read-only memory, and an input and
output component, comprising:

using a physical link selected from one of several physical

link methods;

assigning a unique network address to the smart card

thereby enabling the smart card to act as a standalone
network node;

executing on the smart card a communications module

implementing networking protocols and one or more
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link layer communication protocols, operable to com-
municate with a host computer, operable to communi-
cate with remote network nodes using the networking
protocols and operable to implement network security
protocols thereby setting a security boundary inside the
smart card;
implementing an execution model, wherein the communi-
cation module is driven by input events and by the appli-
cations and wherein the smart card optimized memory
usage by sharing data buffers between one or more com-
munications protocol layers or security protocol layers;

executing on the host computer one or more communica-
tion and networking protocols operable to communicate
with the smart card and operable to communicate with
the remote network nodes; and
executing one or more secure network applications on the
smart card wherein the network applications call upon
the communication module of the smart card to commu-
nicate with the host computer or the remote network
node using the networking protocols and network secu-
rity protocols and wherein the secure network applica-
tions are securely accessible by the remote network
nodes using un-modified network clients and servers.
2. The method of claim 1 wherein the physical link is
selected from the set including full-duplex serial connection
and half-duplex serial connection.
3. The method of claim 2 wherein the physical link is a
full-duplex serial connection using the serial peripheral inter-
face protocol.
4. The method of claim 1 further comprising connecting an
interface device between the smart card and the host com-
puter using a physical link that is a serial connection having
half-duplex between the smart card and the interface device
and full-duplex between the interface device and the host
computer.
5. The method of claim 4 further comprising operating the
interface device to perform a bridging function between the
half-duplex connection and the full-duplex connection.
6. The method of claim 5 wherein the step of performing a
bridging function further comprises providing at least one of
function selected from:
enabling a smart card operating in a command/response
mode to communicate with network nodes as a peer;

enabling a smart card operating in half-duplex communi-
cation mode to handle full-duplex communication traf-
fic;

encapsulating upper layer protocol frames;

enabling transportation of upper layer protocol frames

exceeding a frame size limit of the lower link layer; and
supporting multiple logical connections of upper layer pro-
tocols.

7. The method of claim 4 of operating a software module on
the interface device according to a finite state machine per-
mitting the interface device to forward messages between the
smart card and the network wherein the interface device is in
one of the at least one states permitting the smart card to
initiate and send messages.

8. The method of claim 7 wherein the at least one state is
selected from a set of states corresponding to the interface
device transmitting a Send, a Put, and a Poll command,
respectively.

9. The method of claim 4 of operating a software module on
the host computer according to a finite state machine having
at least one state permitting the smart card to transmit mes-
sages to the network wherein the software module is in one of
the at least one states permitting the smart card to initiate and
send messages.



US 7,509,487 B2

45

10. The method of claim 9 wherein the at least one state
permitting the smart card to transmit messages to the network
is selected from a set of states corresponding to the interface
device transmitting a Send, a Put, and a Poll command,
respectively.

11. The method of claim 9 comprising the step of operating
the smart card according to a finite state machine having at
least one state in which the smart card waits for a message
from the host computer indicating that the smart card may
transmit a message.

12. The method of claim 4 further comprising:

operating the smart card according to a finite state machine
whereby the smart card uses the response status at the
end of the response to the command sent by the host
computer or an intermediate device to indicate that the
smart card wants to transmit information to the host
computer or to the network.

13. The method of claim 12 where in the step of operating
the smart card comprises operating the smart card according
to a finite state machine having at least one state in which the
smart card waits for a message indicating to the smart card
that the smart card may transmit information to the host.

14. The method of claim 13 further comprising operating
the smart card to transition among the states of the finite state
machine.

15. The method of claim 12 further comprising:

operating the host computer or an intermediate device con-
nected between the host computer and the smart card
according to a finite state machine to transmit a polling
message to the smart card checking if the smart card may
want to transmit information to the host computer.

16. The method of claim 15 wherein the host computer or
intermediate device includes a Remote Access Server (RAS)
and wherein the step of operating the host computer or inter-
mediate device comprises operating the host computer or
intermediate device according to a finite state machine having
a Polling state in which the host computer or intermediate
device polls the smart card, a Get-from-card state in which the
host computer or intermediate device obtains packets of data
from the smart card, a Putting-to-card state in which the host
computer or intermediate device transmits data to the smart
card, and a Checking Remote Access Server(RAS) state in
which the host computer or intermediate device checks
whether Remote Access Server (RAS) has any data to trans-
mit to the smart card.

17. The method of claim 16 further comprising operating
the host computer or the intermediate device to transition
among the states of the finite state machine.

18. A system providing secure communication between a
smart card and remote network nodes over a network wherein
the remote network nodes communicate with the smart card
using un-modified network clients and sewers and wherein
the smart card has a central processing unit, a random access
memory, a non-volatile memory, a read-only memory, and an
input and output component, the system comprising:

a physical link connecting the smart card and a host com-
puter, the physical link selected from one of several
physical link methods;

logic to assign a unique network address to the smart card
thereby enabling the smart card to act as a standalone
network node;

the smart card comprising a communications module
implementing networking protocols and one or more
link layer communication protocols, operable to com-
municate with the host computer, operable to commu-
nicate with remote network nodes using the networking
protocols and operable to implement network security
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protocols thereby setting a security boundary inside the
smart card, wherein the communication module is
driven by input events and by the applications and
wherein the smart card optimizes memory usage by
sharing data buffers between one or more communica-
tions protocol layers or security protocol layers;

the host computer comprising logic implementing one or

more communication networking protocols operable to
communicate with the smart card and operable to com-
municate with the remote network nodes; and
the smart card further comprising one or more secure net-
work applications wherein the network applications call
upon the communication module of the smart card to
communicate with the host computer or the remote net-
work node using the networking protocols and network
security protocols and wherein the secure network appli-
cations are securely accessible by the host computer or
the remote network nodes using un-modified network
clients or servers.
19. The system of claim 18 wherein the physical link is
selected from the set including full-duplex serial connection
and half-duplex serial connection.
20. The system of claim 19 wherein the physical link is a
full-duplex serial connection using the serial peripheral inter-
face protocol.
21. The system of claim 18 further comprising an interface
device between the smart card and the host computer, the
interface device using a physical link that is a serial connec-
tion having half-duplex between the smart card and the inter-
face device and full-duplex between the interface device and
the host computer.
22. The system of claim 21 further wherein the interface
device comprises logic to perform a bridging function
between the half-duplex connection and the full-duplex con-
nection.
23. The system of claim 22 wherein the logic to perform a
bridging function further comprises logic to provide at least
one of function selected from:
enabling a smart card operating in a command/response
mode to communicate with network nodes as a peer;

enabling a smart card operating in half-duplex communi-
cation mode to handle full-duplex communication traf-
fic;

encapsulating upper layer protocol frames;

enabling transportation of upper layer protocol frames

exceeding a frame size limit of the lower link layer; and
supporting multiple logical connections of upper layer pro-
tocols.

24. The system of claim 21 wherein the interface device
further comprises logic to operate the interface device accord-
ing to a finite state machine permitting the interface device to
forward messages between the smart card and the network
wherein the interface device is in one of the at least one states
permitting the smart card to initiate and send messages.

25. The system of claim 24 wherein the at least one state
permitting the smart card to transmit messages to the network
is selected from a set of states corresponding to the interface
device transmitting a Send, a Put, and a Poll command,
respectively.

26. The system of claim 21 of wherein the host computer
further comprises logic to operate the host computer accord-
ing to a finite state machine having at least one state permit-
ting the smart card to transmit messages to the network
wherein the software module is in one of the at least one states
permitting the smart card to initiate and send messages.
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27. The system of claim 26 wherein the at least one state is
selected from a set of states corresponding to the interface
device transmitting a Send, a Put, and a Poll command,
respectively.

28. The system of claim 26 wherein the smart card com-
prises logic to operate the smart card according to a finite state
machine having at least one state in which the smart card
waits for a message from the host computer indicating that the
smart card may transmit a message.

29. The system of claim 21 wherein the smart card further
comprises logic to operate the smart card according to a finite
state machine whereby smart card uses the response status at
the end of the response to the command sent by the host
computer or an intermediate device to indicate that the smart
card wants to transmit information to the host computer or to
the network.

30. The system of claim 29 wherein the logic to operate the
smart card according to a finite state machine further com-
prises logic to operate the smart card according to a finite state
machine having at least one state in which the smart card
waits for a message indicating to the smart card that the smart
card may transmit information to the host.

31. The system of claim 30 further the logic to operate the
smart card according to a finite state machine further com-
prises logic to operate the smart card to transition among the
states of the finite state machine.

32. The system of claim 29 further comprising:

logic in the host computer or an intermediate device con-

nected between the host computer and the smart card to
operate according to a finite state machine to transmit a
polling message to the smart card checking if the smart
card may want to transmit information to the host com-
puter.

33. The system of claim 32 wherein the host computer or
intermediate device includes a Remote Access Server (RAS)
and wherein the logic to operate the host computer or inter-
mediate device comprises logic to operate the host computer
or intermediate device according to a finite state machine
having a Polling state in which the host computer or interme-
diate device polls the smart card, a Get-from-card state in
which the host computer or intermediate device obtains pack-
ets of data from the smart card, a Putting-to-card state in
which the host computer or intermediate device transmits
data to the smart card, and a Checking Remote Access Server
RAS state in which the host computer or intermediate device
checks whether Remote Access Server RAS has any data to
transmit to the smart card.

34. The system of claim 33 further comprising logic to
operate the host computer or the intermediate device to tran-
sition among the states of the finite state machine.

35. A method of secure communication between a Multi-
MediaCard (MMC) and remote network nodes over a net-
work wherein the MultiMediaCard (MMC) acts as a standa-
lone network node and the remote network nodes
communicate with the MultiMediaCard (MMC) using un-
modified network clients and servers and wherein the Multi-
MediaCard (MMC) has a central processing unit, a random
access memory, a non-volatile memory, a read-only memory,
and an input and output component, comprising:

using a physical link selected from one of several physical

link methods;

assigning a unique network address to the MultiMediaCard

(MMC) thereby enabling the MultiMediaCard (MMC)
to act as a standalone network node;

executing on the MultiMediaCard (MMC) a communica-

tions module implementing networking protocols and
one or more link layer communication protocols, oper-
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able to communicate with a host computer, operable to
communicate with remote network nodes using the net-
working protocols and operable to implement network
security protocols thereby setting a security boundary
inside MultiMediaCard (MMC);

implementing an execution model, wherein the communi-
cation module is driven by input events and by the appli-
cations and wherein the MultiMediaCard (MMC) opti-
mized memory usage by sharing data buffers between
one or more communications protocol layers or security
protocol layers;
executing on the host computer one or more communi-

cation and networking protocols operable to commu-
nicate with the MultiMediaCard (MMC) and oper-
able to communicate with the remote network nodes;
and

executing one or more secure network applications on the
MultiMediaCard (MMC) wherein the network applica-
tions call upon the communication module of the Mul-
tiMediaCard (MMC) to communicate with the host
computer or the remote network node using the net-
working protocols and network security protocols and
wherein the secure network applications are securely
accessible by the remote network nodes using un-modi-
fied network clients and servers.

36. A system providing secure communication between a
MultiMediaCard (MMC) and remote network nodes over a
network wherein the remote network nodes communicate
with the MultiMediaCard (MMC) using un-modified net-
work clients and servers and wherein the MultiMediaCard
(MMC) has a central processing unit, a random access
memory, a non-volatile memory, a read-only memory, and an
input and output component, the system comprising:

a physical link connecting the MultiMediaCard (MMC)
and a host computer, the physical link selected from one
of several physical link methods;

logic to assign a unique network address to the MultiMe-
diaCard (MMC) thereby enabling the MultiMediaCard
(MMC) to act as a standalone network node;

the MultiMediaCard (MMC) comprising a communica-
tions module implementing networking protocols and
one or more link layer communication protocols, oper-
ableto communicate with the host computer, operable to
communicate with remote network nodes using the net-
working protocols and operable to implement network
security protocols thereby setting a security boundary
inside the MultiMediaCard (MMC), wherein the com-
munication module is driven by input events and by the
applications and wherein the MultiMediaCard (MMC)
optimizes memory usage by sharing data buffers
between one or more communications protocol layers or
security protocol layers;

the host computer comprising logic implementing one or
more communication networking protocols operable to
communicate with the MultiMediaCard (MMC) and
operable to communicate with the remote network
nodes; and

the MultiMediaCard (MMC) further comprising one or
more secure network applications wherein the network
applications call upon the communication module of the
MultiMediaCard (MMC) to communicate with the host
computer or the remote network node using the net-
working protocols and network security protocols and
wherein the secure network applications are securely
accessible by the host computer or the remote network
nodes using un-modified network clients or servers.
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37. The method of claim 35 wherein the physical link is
selected from the set including full-duplex serial connection
and half-duplex serial connection.
38. The method of claim 37 wherein the physical link is a
full-duplex serial connection using the serial peripheral inter-
face protocol.
39. The method of claim 35 further comprising connecting
an interface device between the smart card and the host com-
puter using a physical link that is a serial connection having
half-duplex between the smart card and the interface device
and full-duplex between the interface device and the host
computer.
40. The method of claim 39 further comprising operating
the interface device to perform a bridging function between
the half-duplex connection and the full-duplex connection.
41. The method of claim 40 wherein the step of performing
abridging function further comprises providing at least one of
function selected from:
enabling a smart card operating in a command/response
mode to communicate with network nodes as a peer;

enabling a smart card operating in half-duplex communi-
cation mode to handle full-duplex communication traf-
fic;

encapsulating upper layer protocol frames;

enabling transportation of upper layer protocol frames

exceeding a frame size limit of the lower link layer; and
supporting multiple logical connections of upper layer pro-
tocols.

42. The method of claim 39 of operating a software module
on the interface device according to a finite state machine
permitting the interface device to forward messages between
the smart card and the network wherein the interface device is
in one of the at least one states permitting the smart card to
initiate and send messages.

43. The method of claim 42 wherein the at least one state is
selected from a set of states corresponding to the interface
device transmitting a Send, a Put, and a Poll command,
respectively.

44. The method of claim 39 of operating a software module
on the host computer according to a finite state machine
having at least one state permitting the smart card to transmit
messages to the network wherein the software module is in
one of the at least one states permitting the smart card to
initiate and send messages.

45. The method of claim 44 wherein the at least one state
permitting the smart card to transmit messages to the network
is selected from a set of states corresponding to the interface
device transmitting a Send, a Put, and a Poll command,
respectively.

46. The method of claim 44 comprising the step of operat-
ing the smart card according to a finite state machine having
at least one state in which the smart card waits for a message
from the host computer indicating that the smart card may
transmit a message.

47. The method of claim 39 further comprising:

operating the smart card according to a finite state machine

whereby the smart card uses the response status at the
end of the response to the command sent by the host
computer or an intermediate device to indicate that the
smart card wants to transmit information to the host
computer or to the network.

48. The method of claim 47 wherein the step of operating
the smart card comprises operating the smart card according
to a finite state machine having at least one state in which the
smart card waits for a message indicating to the smart card
that the smart card may transmit information to the host.
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49. The method of claim 48 further comprising operating
the smart card to transition among the states of the finite state
machine.
50. The method of claim 47 further comprising:
operating the host computer or an intermediate device con-
nected between the host computer and the smart card
according to a finite state machine to transmit a polling
message to the smart card checking if the smart card may
want to transmit information to the host computer.
51. The method of claim 50 wherein the host computer or
intermediate device includes a Remote Access Server (RAS)
and wherein the step of operating the host computer or inter-
mediate device comprises operating the host computer or
intermediate device according to a finite state machine having
a Polling state in which the host computer or intermediate
device polls the smart card, a Get-from-card state in which the
host computer or intermediate device obtains packets of data
from the smart card, a Putting-to-card state in which the host
computer or intermediate device transmits data to the smart
card, and a Checking Remote Access Server (RAS) state in
which the host computer or intermediate device checks
whether Remote Access Server (RAS) has any data to trans-
mit to the smart card.
52. The method of claim 51 further comprising operating
the host computer or the intermediate device to transition
among the states of the finite state machine.
53. The system of claim 36 wherein the physical link is
selected from the set including full-duplex serial connection
and half-duplex serial connection.
54. The system of claim 53 wherein the physical link is a
full-duplex serial connection using the serial peripheral inter-
face protocol.
55. The system of claim 36 further comprising connecting
an interface device between the smart card and the host com-
puter using a physical link that is a serial connection having
half-duplex between the smart card and the interface device
and full-duplex between the interface device and the host
computer.
56. The system of claim 55 further comprising operating
the interface device to perform a bridging function between
the half-duplex connection and the full-duplex connection.
57. The system of claim 56 wherein the step of performing
abridging function further comprises providing at least one of
function selected from:
enabling a smart card operating in a command/response
mode to communicate with network nodes as a peer;

enabling a smart card operating in half-duplex communi-
cation mode to handle full-duplex communication traf-
fic;

encapsulating upper layer protocol frames;

enabling transportation of upper layer protocol frames

exceeding a frame size limit of the lower link layer; and
supporting multiple logical connections of upper layer pro-
tocols.

58. The system of claim 55 of operating a software module
on the interface device according to a finite state machine
permitting the interface device to forward messages between
the smart card and the network wherein the interface device is
in one of the at least one states permitting the smart card to
initiate and send messages.

59. The system of claim 58 wherein the at least one state is
selected from a set of states corresponding to the interface
device transmitting a Send, a Put, and a Poll command,
respectively.

60. The system of claim 55 of operating a software module
on the host computer according to a finite state machine
having at least one state permitting the smart card to transmit
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messages to the network wherein the software module is in
one of the at least one states permitting the smart card to
initiate and send messages.

61. The system of claim 60 wherein the at least one state
permitting the smart card to transmit messages to the network
is selected from a set of states corresponding to the interface
device transmitting a Send, a Put, and a Poll command,
respectively.

62. The system of claim 60 comprising the step of operat-
ing the smart card according to a finite state machine having
at least one state in which the smart card waits for a message
from the host computer indicating that the smart card may
transmit a message.

63. The system of claim 55 further comprising:

operating the smart card according to a finite state machine

whereby the smart card uses the response status at the
end of the response to the command sent by the host
computer or an intermediate device to indicate that the
smart card wants to transmit information to the host
computer or to the network.

64. The system of claim 63 wherein the step of operating
the smart card comprises operating the smart card according
to a finite state machine having at least one state in which the
smart card waits for a message indicating to the smart card
that the smart card may transmit information to the host.
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65. The system of claim 64 further comprising operating
the smart card to transition among the states of the finite state
machine.

66. The system of claim 63 further comprising:

operating the host computer or an intermediate device con-

nected between the host computer and the smart card
according to a finite state machine to transmit a polling
message to the smart card checking if the smart card may
want to transmit information to the host computer.

67. The system of claim 66 wherein the host computer or
intermediate device includes a Remote Access Server (RAS)
and wherein the step of operating the host computer or inter-
mediate device comprises operating the host computer or
intermediate device according to a finite state machine having
a Polling state in which the host computer or intermediate
device polls the smart card, a Get-from-card state in which the
host computer or intermediate device obtains packets of data
from the smart card, a Putting-to-card state in which the host
computer or intermediate device transmits data to the smart
card, and a Checking Remote Access Server (RAS) state in
which the host computer or intermediate device checks
whether Remote Access Server (RAS) has any data to trans-
mit to the smart card.

68. The method of claim 67 further comprising operating
the host computer or the intermediate device to transition
among the states of the finite state machine.
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